首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   5篇
天文学   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1998年   2篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Saturation of the Large Aperture Scintillometer   总被引:2,自引:0,他引:2  
The saturation aspects of a large aperture (0.3 m) scintillometer operating over a 10-km path were investigated. Measurements were made over mainly forested, hilly terrain with typical maximum sensible heat fluxes of 300–400 W m −2, and over flat terrain with mainly grass, and typical maximum heat fluxes of 100–150 W m−2. Scintillometer-based fluxes were compared with eddy-correlation observations. Two different schemes for calculating the reduction of scintillation caused by saturation were applied: one based on the work of Hill and Clifford, the other based on Frehlich and Ochs. Without saturation correction, the scintillation fluxes were lower than the eddy-correlation fluxes; the saturation correction according to Frehlich and Ochs increased the scintillometer fluxes to an unrealistic level. Correcting the fluxes after the theory of the Hill and Clifford gave satisfying results  相似文献   
2.
Sensitivity of evapotranspiration E and root zone soil moisture content θ to the parameterization of soil water retention Ψ(θ) and soil water conductivity K(Ψ), as well as to the definition of field capacity soil moisture content, is investigated by comparing Psi1-PMSURF and Theta-PMSURF models. The core of PMSURF (Penman–Monteith Surface Fluxes) consists of a 3-layer soil moisture prediction module based on Richard’s equation in combination with the PenmanMonteith concept for estimating turbulent heat fluxes. Psi1- PMSURF and Theta-PMSURF differ only in the parameterization of the moisture availability function Fma. In Psi1,Fma is parameterized by using Ψ(θ) and K(Ψ) hydrophysical functions; in Theta, Fma is parameterized by using hydrophysical parameters: the field capacity θf and wilting point θw soil moisture contents. Both Psi1 and Theta are based on using soil hydrophysical data, that is, there is no conceptual difference between them in the parameterization of E even if in Psi1Fma depends on 12 parameters, while in Theta only on two soil/vegetation parameters. Sensitivity tests are performed using the Cabauw dataset. Three soil datasets are used: the vG (van Genuchten), CH/vG (Clapp and Hornberger/van Genuchten) and CH/PILPS (Clapp and Hornberger/Project for Intercomparison of Land-surface Parameterization Schemes) datasets. The vG dataset is used in van Genuchten’s parameterization, while in Clapp and Hornberger’s the CH/vG and CH/PILPS datasets are used. It is found that the consistency of soil hydrophysical data in the simulation of transpiration is quite important. The annual sum of E obtained by Psi1EPsi1, differs from the annual sum of E obtained by Theta, ETheta, because of the inconsistency between the fitting parameters of Ψ(θ) and K(Ψ) and the θf, and not because of the differencies in the parameterization of Fma. Further, θf can be estimated not only on the basis of using soil hydrophysical functions (the θf so obtained is θSoilf) but also on the basis of analysing the transpiration process (the θfso obtained is θtrf). θtrf values estimated from the condition EThetaEPsi1 are in acceptable accordance with the θSoilf values proposed by Wösten and co-workers. The results are useful in optimizing the parameterization of transpiration in land-surface schemes.  相似文献   
3.
A new land surface parameterization scheme (ALSIS), with emphasis on soil moisture prediction, is described and validated with observations from HAPEX-MOBILHY and Cabauw. An important feature of the scheme is the inclusion of vertical heterogeneity of soil hydraulic parameters is modelling unsaturated flow. The simulated soil moisture for HAPEX site using a vertically homogeneous soil has a positive bias in the upper soil layers and a negative bias in the deep soil layers. Taking into account the soil vertical heterogeneity greatly eliminates this discrepancy and results in an excellent agreement between annual cycles of modelled and observed soil moisture profiles. The mean annual soil moisture in the top 1.6 m of soil increased from 394 mm for homogeneous case to 433 mm for the heterogeneous case, consistent with 435 mm observed. The improvement in soil moisture simulation resulted in an improved skill in predicting the mean and the diurnal cycles of surface fluxes for the intensive observational period (28 May–3 July). The simulated monthly averages of surface temperature and fluxes follow observations over the year, except for January when the model overestimates the latent heat flux due to its failure in simulating high rates of dew fall. The deviation of modelled monthly mean surface fluxes from observations are well within the estimated observational errors. The simulated mean daily surface temperature, and surface fluxes are generally consistent with observations, except for some times in the winter period. The modelled diurnal cycles of temperature and fluxes are in agreement with those observed. However, the model overestimates the night-time latent heat flux, especially during January.  相似文献   
4.
The morning transition between the stable nocturnal situation and the daytime convective boundary layer (CBL) is of interest both for basic understanding and for initializing prognostic models. While the morning growth phase of the CBL has been studied in detail, relatively little has been published on the transition itself. In this paper, conventional observations of surface temperature, humidity, and turbulent fluxes,and data from a meteorological tower, are combined with measurements of the onset of convection by boundary-layer wind profilers to explore the timing and behaviour of the transition period. The transition is defined here as the period between sunrise and the time at which the depth ofconvection reaches about 200 m AGL. Diagnostic relationships based on surface heat flux, the temperature difference between 2 m and 200 m, and bulk Richardson number are explored. The transition is foundto be enabled by surface heating relaxing the surface stability, while the warming of the layerbetween 2 m and 200 m is in large part due to shear-driven entrainment.  相似文献   
5.
Wind profiles,momentum fluxes and roughness lengths at Cabauw revisited   总被引:1,自引:1,他引:1  
We describe the results of an experiment focusing on wind speed and momentum fluxes in the atmospheric boundary layer up to 200 m. The measurements were conducted in 1996 at the Cabauw site in the Netherlands. Momentum fluxes are measured using the K-Gill Propeller Vane. Estimates of the roughness length are derived using various techniques from the wind speed and flux measurements, and the observed differences are explained by considering the source area of the meteorological parameters. A clear rough-to-smooth transition is found in the wind speed profiles at Cabauw. The internal boundary layer reaches the lowest k-vane (20 m) only in the south-west direction where the obstacle-free fetch is about 2 km. The internal boundary layer is also reflected in the roughness lengths derived from the wind speed profiles. The lower part of the profile (< 40 m) is not in equilibrium and no reliable roughness analysis can be given. The upper part of the profile can be linked to a large-scale roughness length. Roughness lengths derived from the horizontal wind speed variance and gustiness have large footprints and therefore represent a large-scale average roughness. The drag coefficient is more locally determined but still represents a large-scale roughness length when it is measured above the local internal boundary layer. The roughness length at inhomogeneous sites can therefore be determined best from drag coefficient measurements just above the local internal boundary layers directly, or indirectly from horizontal wind speed variance or gustiness. In addition, the momentum and heat fluxes along the tower are analysed and these show significant variation with height related to stability and possibly surface heterogeneity. It appears that the dimensionless wind speed gradients scale well with local fluxes for the variety of conditions considered, including the unstable cases.  相似文献   
6.
The meteorology at the Cabauw tower site in the Netherlands has been modelled for 2005 using a local scale prognostic meteorological and air pollution model called TAPM. A number of performance measures have been used to assess model accuracy, including comparison statistics such as root-mean-square error (RMSE) and index of agreement (IOA). Results show that the model performs very well for prediction of wind and temperature at the six tower levels that range from 10 to 200 m above the ground, as well as performing well for radiation and surface fluxes. The model simulation shows almost no bias in mean and standard deviations of wind and temperature at each tower height level, with small RMSE (e.g. RMSE of 1.2 m s−1 for 10-m wind speed, and 1.6°C for 10-m temperature) and high correlation and IOA (e.g. IOA of 0.92 for 10-m wind speed and 0.98 for 10-m temperature). Results for radiation and surface fluxes also show good performance, although some biases were seen for these variables, and possibilities for future model development were identified. An examination of model sensitivity also explored several aspects of the model configuration and input.  相似文献   
7.
The land-surface flux model (PROGSURF) designed jointly at the Universities of Vienna and Budapest is reviewed; it belongs to the broad spectrum of PILPS1 models. PROGSURF comprises one vegetation layer and three soil layers. Temperature prediction is made by the heat conduction equation in conjunction with the force-restore method. Turbulent heat fluxes are parameterized by gradient laws using the resistance concept. The formula for the canopy surface resistance involves both a parameter describing atmospheric demand and one describing moisture availability. Soil moisture prediction is made with Richards' equation. PROGSURF is tested in off-line mode for the Cabauw data set. The observed annual mean values of the state and flux quantities at the earth's surface are well reproduced. For example, the model yields latent and sensible heat fluxes of −35.3 and −2.4 W/m2, respectively; evapotranspiration and runoff is −449 and 326 mm/yr; and root zone soil moisture content is 0.344 m3/m3. Further, the seasonal changes of water and energy balance components are well simulated. The sensitivity of PROGSURF to the canopy resistance formulation is analysed. We find that the atmospheric demand is largely represented by the saturation value of the evapotranspiration/soil moisture curve with maximum summer impact upon the annual value and further that the moisture availability is represented by the slope of the evapotranspiration curve. Both saturation value and slope control the amplitude of the seasonal fluctuation of the water balance components; at Cabauw site the saturation value is the governing parameter. These results fit satisfactorily into the other PILPS models. In particular, we are able to reproduce with PROGSURF the total variability of most other PILPS models by simply changing the atmospheric demand and soil moisture availability parameters. PROGSURF presently serves to simulate observed surface fluxes for an atmospheric diagnostic model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号