首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
大气科学   4篇
海洋学   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.  相似文献   
2.
王波  霍振华 《大气科学进展》2013,30(4):1213-1223
An extension of the conditional nonlinear optimal parameter perturbation (CNOP-P) method is applied to the parameter optimization of the Common Land Model (CoLM) for the North China Plain with the differential evolution (DE) method. Using National Meteorological Center (NMC) Reanalysis 6-hourly surface flux data and National Center for Environmental Prediction/Department of Energy (NCEP/DOE) Atmospheric Model Intercomparison Project II (AMIP-II) 6-hourly Reanalysis Gaussian Grid data, two experiments (I and II) were designed to investigate the impact of the percentages of sand and clay in the shallow soil in CoLM on its ability to simulate shallow soil moisture. A third experiment (III) was designed to study the shallow soil moisture and latent heat flux simultaneously. In all the three experiments, after the optimization stage, the percentages of sand and clay of the shallow soil were used to predict the shallow soil moisture in the following month. The results show that the optimal parameters can enable CoLM to better simulate shallow soil moisture, with the simulation results of CoLM after the double-parameter optimal experiment being better than the single-parameter optimal experiment in the optimization slot. Furthermore, the optimal parameters were able to significantly improve the prediction results of CoLM at the prediction stage. In addition, whether or not the atmospheric forcing and observational data are accurate can seriously affect the results of optimization, and the more accurate the data are, the more significant the results of optimization may be.  相似文献   
3.
Formulating model uncertainties for a convection-allowing ensemble prediction system(CAEPS) is a much more challenging problem compared to well-utilized approaches in synoptic weather forecasting. A new approach is proposed and tested through assuming that the model uncertainty should reasonably describe the fast nonlinear error growth of the convection-allowing model, due to the fast developing character and strong nonlinearity of convective events. The Conditional Nonlinear Optimal Perturbation related to Parameters(CNOP-P) is applied in this study. Also, an ensemble approach is adopted to solve the CNOP-P problem. By using five locally developed strong convective events that occurred in pre-rainy season of South China, the most sensitive parameters were detected based on CNOP-P, which resulted in the maximum variations in precipitation. A formulation of model uncertainty is designed by adding stochastic perturbations into these sensitive parameters. Through comparison ensemble experiments by using all the 13 heavy rainfall cases that occurred in the flood season of South China in 2017, the advantages of the CNOP-P-based method are examined and verified by comparing with the well-utilized stochastically perturbed physics tendencies(SPPT) scheme. The results indicate that the CNOP-P-based method has potential in improving the under-dispersive problem of the current CAEPS.  相似文献   
4.
SUN Guodong  MU Mu 《大气科学进展》2011,28(6):1266-1278
The response of a grassland ecosystem to climate change is discussed within the context of a theoretical model.An optimization approach,a conditional nonlinear optimal perturbation related to parameter(CNOP-P) approach,was employed in this study.The CNOP-P,a perturbation of moisture index in the theoretical model,represents a nonlinear climate perturbation.Two kinds of linear climate perturbations were also used to study the response of the grassland ecosystem to different types of climate changes.The results show that the extent of grassland ecosystem variation caused by the CNOP-P-type climate change is greater than that caused by the two linear types of climate change.In addition,the grassland ecosystem affected by the CNOP-P-type climate change evolved into a desert ecosystem,and the two linear types of climate changes failed within a specific amplitude range when the moisture index recovered to its reference state.Therefore,the grassland ecosystem response to climate change was nonlinear.This study yielded similar results for a desert ecosystem seeded with both living and wilted biomass litter.The quantitative analysis performed in this study also accounted for the role of soil moisture in the root zone and the shading effect of wilted biomass on the grassland ecosystem through nonlinear interactions between soil and vegetation.The results of this study imply that the CNOP-P approach is a potentially effective tool for assessing the impact of nonlinear climate change on grassland ecosystems.  相似文献   
5.
In this paper, we set out to study the ensemble forecast for tropical cyclones. The case study is based on the Conditional Nonlinear Optimal Perturbation related to Parameter (CNOP-P) method and the WRF model to improve the prediction accuracy for track and intensity, and two different typhoons are selected as cases for analysis. We first select perturbed parameters in the YSU and WSM6 schemes, and then solve CNOP-Ps with simulated annealing algorithm for single parameters as well as the combination of multiple parameters. Finally, perturbations are imposed on default parameter values to generate the ensemble members. The whole proposed procedures are referred to as the Perturbed Parameter Ensemble (PPE). We also conduct two experiments, which are control forecast and ensemble forecast, termed Ctrl and perturbed-physics ensemble (PPhyE) respectively, to demonstrate the performance for contrast. In the article, we compare the effects of three experiments on tropical cyclones in aspects of track and intensity, respectively. For track, the prediction errors of PPE are smaller. The ensemble mean of PPE filters the unpredictable situation and retains the reasonably predictable components of the ensemble members. As for intensity, ensemble mean values of the central minimum sea-level pressure and the central maximum wind speed are closer to CMA data during most of the simulation time. The predicted values of the PPE ensemble members included the intensity of CMA data when the typhoon made landfall. The PPE also shows uncertainty in the forecast. Moreover, we also analyze the track and intensity from physical variable fields of PPE. Experiment results show PPE outperforms the other two benchmarks in track and intensity prediction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号