首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   3篇
  2013年   3篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
We can generate a net global GHG emission reduction from developing countries (in an UNFCCC term, non-Annex 1 Parties) without imposing targets on them, if we discount CERs generated from CDM projects. The CER discounting scheme means that a part or all of CDM credits, i.e., CERs, made by developing countries through unilateral CDM projects will be retired rather than sold to developed countries to increase their emissions. It is not feasible to impose certain forms of target (whether sectoral or intensity targets) on non-Annex 1 whose emission trend is hard to predict and whose industrial structure is undergoing a rapid change.

Instead of imposing targets (a command and control approach), we should apply market instruments in generating a net global emission reduction from non-Annex 1. Since April 2005 when the first unilateral CDM was approved by the CDM Executive Board, CDM has been functioning as a market mechanism to provide incentives for developing countries to initiate their own emission reduction projects. As CDM is the only market mechanism engaging developing countries in the Kyoto Protocol, we should try to re-design CDM so that it can generate net global emission reductions by introducing the idea of discounting CERs. But in order to produce meaningful GHG emission reductions by discounting CERs, the project scope of CDM has to be expanded by relaxing project additionality criteria while maintaining strict technical additionality criteria. Agreeing on the CERs Discounting Scheme will have a better political chance than agreeing on imposing emission reduction targets on developing countries.  相似文献   
2.
The ‘additionality’ criterion for the Clean Development Mechanism (CDM) (which is key to ensuring that CDM projects lead to real and additional emission reductions) has been a topic of much analysis and discussion. A number of different approaches, including those based on financial, barrier and market-penetration criteria, have been suggested as a test for additionality. A simple test for additionality is proposed that draws on the framework of the diffusion of innovations, especially the risk profile of adopters of new technologies or innovations. This approach has the potential to streamline the assessment for additionality, although it will require data on the rate of implementation of specific technologies or innovations.  相似文献   
3.
Abstract

The role of sinks in the clean development mechanism (CDM) has been a subject of controversy for several reasons; one being that temporary carbon storage in forests appeared to prevent any opportunity to use them as an option to reduce permanent greenhouse gas (GHG) emissions. In Milan (December 2003), the Conference of the Parties (CoP) decided to address this problem by introducing two types of expiring units: temporary CERs (tCERs) and long-term CERs (lCERs). Countries committed to emission reductions may acquire these units to temporarily offset their emissions and thus to postpone permanent emission reductions. As further decided by the CoP, baseline emissions of GHGs and the enhancement of sinks outside the project boundary will not be accounted for in the calculation of tCERs or lCERs. The contribution of CDM-sink projects to GHG emissions abatement will therefore be greater than what will be credited to them. On the other hand, permanent GHG emissions that may result as a consequence of the implementation of sink project activities are treated as non-permanent. If these emissions are above avoided baseline emissions, CDM-sinks will result in net increases of GHG emissions into the atmosphere. After briefly reassessing the non-permanence problem, this article explains how tCERs and lCERs should be quantified according to Decision 19/CP.9 of CoP-9 and how calculations are implemented in the forthcoming software CO2 Land. Using a simple numerical example, it illustrates how the GHG accounting rule adopted at CoP-9 may result in net increases of GHG emissions. In the conclusion, a possible solution to this problem is proposed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号