首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   8篇
  国内免费   5篇
测绘学   43篇
大气科学   3篇
地球物理   28篇
地质学   8篇
海洋学   19篇
天文学   16篇
综合类   6篇
自然地理   50篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   13篇
  2006年   10篇
  2005年   18篇
  2004年   6篇
  2003年   9篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   10篇
  1998年   10篇
  1997年   8篇
  1996年   8篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1984年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
1.
This paper studies the long period variations of the eccentricity vector of the orbit of an artificial satellite, under the influence of the gravity field of a central body. We use modified orbital elements which are non-singular at zero eccentricity. We expand the long periodic part of the corresponding Lagrange equations as power series of the eccentricity. The coefficients characterizing the differential system depend on the zonal coefficients of the geopotential, and on initial semi-major axis, inclination, and eccentricity. The differential equations for the components of the eccentricity vector are then integrated analytically, with a definition of the period of the perigee based on the notion of “free eccentricity”, and which is also valid for circular orbits. The analytical solution is compared to a numerical integration. This study is a generalization of (Cook, Planet. Space Sci., 14, 1966): first, the coefficients involved in the differential equations depend on all zonal coefficients (and not only on the very first ones); second, our method applies to nearly circular orbits as well as to not too eccentric orbits. Except for the critical inclination, our solution is valid for all kinds of long period motions of the perigee, i.e., circulations or librations around an equilibrium point.  相似文献   
2.
Nonlinear interactions between large waves and freely floating bodies are investigated by a 2D fully nonlinear numerical wave tank (NWT). The fully nonlinear 2D NWT is developed based on the potential theory, MEL/material-node time-marching approach, and boundary element method (BEM). A robust and stable 4th-order Runge–Kutta fully updated time-integration scheme is used with regriding (every time step) and smoothing (every five steps). A special φn-η type numerical beach on the free surface is developed to minimize wave reflection from end-wall and wave maker. The acceleration-potential formulation and direct mode-decomposition method are used for calculating the time derivative of velocity potential. The indirect mode-decomposition method is also independently developed for cross-checking. The present fully nonlinear simulations for a 2D freely floating barge are compared with the corresponding linear results, Nojiri and Murayama’s (Trans. West-Jpn. Soc. Nav. Archit. 51 (1975)) experimental results, and Tanizawa and Minami’s (Abstract for the 6th Symposium on Nonlinear and Free-surface Flow, 1998) fully nonlinear simulation results. It is shown that the fully nonlinear results converge to the corresponding linear results as incident wave heights decrease. A noticeable discrepancy between linear and fully nonlinear simulations is observed near the resonance area, where the second and third harmonic sway forces are even bigger than the first harmonic component causing highly nonlinear features in sway time series. The surprisingly large second harmonic heave forces in short waves are also successfully reproduced. The fully updated time-marching scheme is found to be much more robust than the frozen-coefficient method in fully nonlinear simulations with floating bodies. To compare the role of free-surface and body-surface nonlinearities, the body-nonlinear-only case with linearized free-surface condition was separately developed and simulated.  相似文献   
3.
Spherical Slepian functions and the polar gap in geodesy   总被引:4,自引:0,他引:4  
The estimation of potential fields such as the gravitational or magnetic potential at the surface of a spherical planet from noisy observations taken at an altitude over an incomplete portion of the globe is a classic example of an ill-posed inverse problem. We show that this potential-field estimation problem has deep-seated connections to Slepian's spatiospectral localization problem which seeks bandlimited spherical functions whose energy is optimally concentrated in some closed portion of the unit sphere. This allows us to formulate an alternative solution to the traditional damped least-squares spherical harmonic approach in geodesy, whereby the source field is now expanded in a truncated Slepian function basis set. We discuss the relative performance of both methods with regard to standard statistical measures such as bias, variance and mean squared error, and pay special attention to the algorithmic efficiency of computing the Slepian functions on the region complementary to the axisymmetric polar gap characteristic of satellite surveys. The ease, speed, and accuracy of our method make the use of spherical Slepian functions in earth and planetary geodesy practical.  相似文献   
4.
5.
6.
7.
Green's function to the external Dirichlet boundary-value problem for the Laplace equation with data distributed on an ellipsoid of revolution has been constructed in a closed form. The ellipsoidal Poisson kernel describing the effect of the ellipticity of the boundary on the solution of the investigated boundary-value problem has been expressed as a finite sum of elementary functions which describe analytically the behaviour of the ellipsoidal Poisson kernel at the singular point ψ = 0. We have shown that the degree of singularity of the ellipsoidal Poisson kernel in the vicinity of its singular point is of the same degree as that of the original spherical Poisson kernel. Received: 4 June 1996 / Accepted: 7 April 1997  相似文献   
8.
We introduce two sets of fully normalized harmonics for the spectral analysis of functions defined on a spherical cap. The harmonics are the products of Fourier functions and the fully normalized associated Legendre functions of non-integer degree. Using Sturm-Liouville theory for boundary-value problems, we present two convenient and stable formulae for computing the zeros of the associated Legendre functions that form two sets of orthogonal functions. Formulae for the stable numerical evaluation of the fully normalized associated Legendre functions of non-integer degree that avoid the gamma function are also derived. The result from the expansions of sea-level anomaly from altimetry into Set 2 fully normalized cap harmonics shows fast convergence of the series, and the degree variances decay rapidly without aliasing effects. The zero-degree coefficients (Set 2) of sea-level anomaly from TOPEX/ POSEIDON (T/P) and ERS-1 indicate an El Niño event during 1993 January-1993 July, and a La Niño event during 1993 November-1994 July, although the ERS-1 result is less obvious. Ocean circulations over the South China Sea and the Kuroshio area are clearly identified with the low-degree expansions of sea-surface topography (SST) from T/P and ERS-1. A cold-core eddy of 4° in diameter centred at 17.5°N, 118 E was detected with the expansion of SST from T/P cycle 47, and a property of the cap harmonics is used to compute this eddy's kinetic energy. The kinetic energy is at a low in winter and high in summer, and its variation seems to be periodic with an amplitude of 0.4 m2 S-2.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号