首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1608篇
  免费   256篇
  国内免费   306篇
测绘学   564篇
大气科学   191篇
地球物理   283篇
地质学   628篇
海洋学   167篇
天文学   16篇
综合类   163篇
自然地理   158篇
  2024年   3篇
  2023年   21篇
  2022年   45篇
  2021年   51篇
  2020年   94篇
  2019年   84篇
  2018年   57篇
  2017年   92篇
  2016年   105篇
  2015年   116篇
  2014年   102篇
  2013年   136篇
  2012年   122篇
  2011年   118篇
  2010年   89篇
  2009年   105篇
  2008年   98篇
  2007年   123篇
  2006年   120篇
  2005年   91篇
  2004年   77篇
  2003年   55篇
  2002年   41篇
  2001年   26篇
  2000年   26篇
  1999年   23篇
  1998年   27篇
  1997年   18篇
  1996年   17篇
  1995年   14篇
  1994年   19篇
  1993年   10篇
  1992年   7篇
  1991年   10篇
  1990年   7篇
  1989年   7篇
  1988年   5篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有2170条查询结果,搜索用时 15 毫秒
1.
Difficulties are involved in discrete element method (DEM) modelling of the flexible boundary, that is, the membranes covering the soil sample, which can be commonly found in contemporary laboratory soil tests. In this paper, a novel method is proposed wherein the finite difference method (FDM) and DEM are coupled to simulate the rubber membrane and soil body, respectively. Numerical plane strain and triaxial tests, served by the flexible membrane, are implemented and analysed later. The effect of the membrane modulus on the measurement accuracy is considered, with analytical formulae derived to judge the significance of this effect. Based on an analysis of stress-strain responses and the grain rotation field, the mechanical performances produced by the flexible and rigid lateral boundaries are compared for the plane strain test. The results show that (1) the effect of the membrane on the test result becomes more significant at larger strain level because the membrane applies additional lateral confining pressure to the soil body; (2) the tested models reproduce typical stress and volumetric paths for specimens with shear bands; (3) for the plane strain test, the rigid lateral boundary derives a much higher peak strength and larger bulk dilatation, but a similar residual strength, compared with the flexible boundary. The latter produces a more uniform (or ‘diffuse') rotation field and more mobilised local kinematics than does the former. All simulations show that the proposed FDM-DEM coupling method is able to simulate laboratory tests with a flexible boundary membrane.  相似文献   
2.
A possible effective stress variable for wet granular materials is numerically investigated based on an adapted discrete element method (DEM) model for an ideal three‐phase system. The DEM simulations consider granular materials made of nearly monodisperse spherical particles, in the pendular regime with the pore fluid mixture consisting of distinct water menisci bridging particle pairs. The contact force‐related stress contribution to the total stresses is isolated and tested as the effective stress candidate for dense or loose systems. It is first recalled that this contact stress tensor is indeed an adequate effective stress that describes stress limit states of wet samples with the same Mohr‐Coulomb criterion associated with their dry counterparts. As for constitutive relationships, it is demonstrated that the contact stress tensor used in conjunction with dry constitutive relations does describe the strains of wet samples during an initial strain regime but not beyond. Outside this so‐called quasi‐static strain regime, whose extent is much greater for dense than loose materials, dramatic changes in the contact network prevent macroscale contact stress‐strain relationships to apply in the same manner to dry and unsaturated conditions. The presented numerical results also reveal unexpected constitutive bifurcations for the loose material, related to stick‐slip macrobehavior.  相似文献   
3.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
A discrete element modelling of bonded granulates and investigation on the bond effect on their behaviour are very important to geomechanics. This paper presents a two‐dimensional (2‐D) discrete element theory for bonded granulates with bond rolling resistance and provides a numerical investigation into the effect of bond rolling resistance on the yielding of bonded granulates. The model consists of mechanical contact models and equations governing the motion of bonded particles. The key point of the theory is that the assumption in the original bond contact model previously proposed by the authors (55th CSCE‐ASCE Conference, Hamilton, Ont., Canada, 2002; 313–320; J. Eng. Mech. (ASCE) 2005; 131 (11):1209–1213) that bonded particles are in contact at discrete points, is here replaced by a more reliable assumption that bonded particles are in contact over a width. By making the idealization that the bond contact width is continuously distributed with the normal/tangential basic elements (BE) (each BE is composed of spring, dashpot, bond, slider or divider), we establish a bond rolling contact model together with bond normal/tangential contact models, and also relate the governing equations to local equilibrium. Only one physical parameter β needs to be introduced in the theory in comparison to the original bond discrete element model. The model has been implemented into a 2‐D distinct element method code, NS2D. Using the NS2D, a total of 86 1‐D, constant stress ratio, and biaxial compressions tests have been carried out on the bonded granular samples of different densities, bonding strengths and rolling resistances. The numerical results show that: (i) the new theory predicts a larger internal friction angle, a larger yielding stress, more brittle behaviour and larger final broken contact ratio than the original bond model; (ii) the yielding stress increases nonlinearly with the increasing value of β, and (iii) the first‐yield curve (initiation of bond breakage), which define a zone of none bond breakage and which shape and size are affected by the material density, is amplified by the bond rolling resistance in analogous to that predicted by the original bond model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
5.
提要 本文详细讨论了一种三维重力位场快速正反演方法。作者在前人工作的基础上,对算法作了行之有效的改进,通过对反演中的不稳定因素进行各种理论模型试算,得出保证迭代反演稳定收敛的准则,编制出可在微型机IBM—PC上运行的人机对话式自动正反演程序。本文还对各种不均质模型进行了模似计算并将该方法应用于某含油气沉积盆地的双层界面构造研究,揭示出了储油有利地段。  相似文献   
6.
A computer simulation method has been developed to find efficient drilling grids for mineral deposits. A well-known ore deposit is used as a model to develop an efficient pattern for undiscovered ore bodies in the same area or in other prospects where similar geometry is suspected. The model for this study is the Austinville, Virginia deposit, a Mississippi Valley-type deposit composed of 17 ore bodies totaling 34 million short tons (30 million metric tons). The method employs a computer program that simulates drilling the model deposit with different patterns, including various levels of follow-up drilling. Follow-up holes are drilled in fences at one half the original spacing around holes in the grid that show ore-grade mineralization. Each pattern is drilled 100 times from random starting locations to provide a range of outcomes of drilling, including the best, worst, and most likely. For this study, patterns of 100 drill holes were composed of 10 fences spaced 1000–5000 feet (305–1524 m) apart, each with 10 holes spaced 200–1000 feet (61–305 m) apart. In all, 25 grids were used with zero to three levels of follow-up drilling. The 600/2000 grid, with drill holes spaced 600 feet (183 m) apart in fences spaced 2000 feet (610 m) apart, was compared with the 200/5000 grid because they represented contrasting outcomes. The 600/2000 grid penetrated many ore bodies consistently but with few multiple hits to individual ore bodies; whereas the 200/5000 grid inconsistently penetrated few ore bodies with many multiple hits. The 600/2000 grid was more efficient than the 200/5000 grid at hitting large ore bodies of 1,000,000 short tons or greater (900,000 metric tons or greater) and was made more effective by adding one cycle of follow-up drilling. The 600/2000 grid had a 97% chance of hitting one or more large ore bodies with at least one drill hole per ore body, and the 200/5000 grid had a 64% chance. Once hit, there was an 82% chance that the largest ore body would be penetrated by three or more holes when using the 600/2000 grid and an 88% chance using the 200/5000 grid.  相似文献   
7.
By definition, a crisis is a situation that requires assistance to be managed. Hence, response to a crisis involves the merging of local and non-local emergency response personnel. In this situation, it is critical that each participant: (1) know the roles and responsibilities of each of the other participants; (2) know the capabilities of each of the participants; and (3) have a common basis for action. For many types of natural disasters, this entails having a common operational picture of the unfolding events, including detailed information on the weather, both current and forecasted, that may impact on either the emergency itself or on response activities. The Consequences Assessment Tool Set (CATS) is a comprehensive package of hazard prediction models and casualty and damage assessment tools that provides a linkage between a modeled or observed effect and the attendant consequences for populations, infrastructure, and resources, and, hence, provides the common operational picture for emergency response. The Operational Multiscale Environment model with Grid Adaptivity (OMEGA) is an atmospheric simulation system that links the latest methods in computational fluid dynamics and high-resolution gridding technologies with numerical weather prediction to provide specific weather analysis and forecast capability that can be merged into the geographic information system framework of CATS. This paper documents the problem of emergency response as an end-to-end system and presents the integrated CATS–OMEGA system as a prototype of such a system that has been used successfully in a number of different situations.  相似文献   
8.
9.
The Monte Carlo method is used to generate parent stochastic discrete fracture network, from which a series of fractured rock samples of different sizes and orientations are extracted. The fracture network combined with a regular grid forms composite element mesh of the fractured rock sample, in which each composite element is composed of sub‐elements incised by fracture segments. The composite element method (CEM) for the seepage is implemented to obtain the nodal hydraulic potential as well as the seepage flow rates through the fractured rock samples. The application of CEM enables a large quantity of stochastic tests for the fractured rock samples because the pre‐process is facilitated greatly. By changing the sizes and orientations of the samples, the analysis of the seepage characteristics is realized to evaluate the variation of the permeability components, the existence of the permeability tensor and the representative element volume. The feasibility and effectiveness are illustrated in a numerical example. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
10.
On the basis of three geological models and several orebody boundaries,a method of grid subdivision and integral has been proposed to calculate and evaluate the resources of cobalt-rich crusts on the seamounts in the central Pacific Ocean.The formulas of this method are deduced and the interface of program module is designed.The method is carried out in the software "Auto mapping system of submarine topography and geomorphology MBChart".This method and program will possibly become a potential tool to calculate the resources of seamounts and determine the target diggings for China's next Five-year Plan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号