首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   35篇
  国内免费   45篇
测绘学   20篇
大气科学   29篇
地球物理   44篇
地质学   90篇
海洋学   36篇
天文学   8篇
综合类   3篇
自然地理   33篇
  2023年   1篇
  2021年   5篇
  2020年   7篇
  2019年   13篇
  2018年   7篇
  2017年   6篇
  2016年   8篇
  2015年   5篇
  2014年   11篇
  2013年   15篇
  2012年   10篇
  2011年   13篇
  2010年   8篇
  2009年   11篇
  2008年   11篇
  2007年   19篇
  2006年   10篇
  2005年   13篇
  2004年   14篇
  2003年   6篇
  2002年   4篇
  2001年   11篇
  2000年   12篇
  1999年   8篇
  1998年   8篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1977年   1篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
1.
2.
徐善民 《海洋科学》1991,15(3):38-41
本文论述了南黄海表层沉积物天然湿容重和含水量的分布,并利用回归分析的方法讨论了容重和含水量与粒度之间的关系。结果表明,容重和含水量与粘土粒级相关性最好,容重与粘土粒级含量(相似文献   
3.
以现代高速摄影技术和图像分析以及数据处理方法,针对高效振动磨机中弹性散体工质(如钢棒、球体等)的振动力学进行了深入的探讨和分析,为研究散体动力学和振动超细粉碎过程中的能量分布和传递规律以及能量与物质的相互转换机理奠定了基础,也为相关学科的发展提供了一种可以借鉴的方法。  相似文献   
4.
西太平洋暖池区海—气通量计算分析   总被引:4,自引:0,他引:4  
用J.Launiaimen和T.Vihma提出的近地面层湍流通量计算方法,对我国在1992年11月至1993年2月TOGA—COARE—IOP实验中所获资料计算处理。得出所在站位的海一气间显效、潜热及动量通量。指出西大平洋暖池海区游热通量与显效通量之比为10.14:1;风速大于8m/s后各通量随风速的变化率明显增加;动量与热量的块体通量系数Cd和Ce,h随风速变化有相似的规律;Monin—Obukhov大气稳定度参数Z/L与△T/U_(10)之间有较好的统计关系。  相似文献   
5.
黄小军  陈晨  边立杰 《岩土工程技术》2008,22(3):145-147,151
通过对经典的Priebe沉降计算法分析,以及面积置换率的变化对桩体压缩性假设作了改进;对桩土重度差异及承受荷载时应力和变形与深度的关系作了分析,归纳出相应的数学计算公式,用工程实例进行了验证。得到的结果表明改进是合理、适用的,可为今后的设计和施工提供参考。  相似文献   
6.
孙周易  唐淑云 《矿物岩石》1996,16(1):101-103
本文以等物质的量的反应规则建立了岩盐、芒硝中各种化合物的质量分数的计算公式。这些公式既符合法定计量单位的要求,又方便计算。  相似文献   
7.
Re-examination of the Skaergaard intrusion in the context ofits regional setting, combined with new data from explorationdrilling, has resulted in a revised structural model for theintrusion. It is modelled as an irregular box, c. 11 km fromnorth to south, up to 8 km from east to west, and 3·4–4km from the lower to the upper contact. The walls of the intrusionare inferred to follow pre-existing and penecontemporaneoussteep faults, and the floor and roof seem largely controlledby bedding planes in the host sediments and lavas, similar toregional sills. The suggested shape and volume are in agreementwith published gravimetric modelling. Crystallization alongall margins of the intrusion concentrated the evolving meltin the upper, central part of the intrusion, best visualizedas an ‘onion-skin’ structure inside the box. Thetotal volume is estimated to c. 280 ± 23 km3, of which13·7% are referred to the Upper Border Series (UBS),16·4% to the Marginal Border Series (MBS) and 69·9%to the Layered Series (LS). In the LS, the Lower Zone (LZ) isestimated to constitute 66·8%, the Middle Zone (MZ) 13·5%and the Upper Zone (UZ) 19·7%. The new volume relationshipsprovide a mass balance estimate of the major and trace elementbulk composition of the intrusion. The parental magma to theSkaergaard intrusion is similar to high-Ti East Greenland tholeiiticplateau basalts with Mg number c. 0.45. The intrusion representsthe solidification of contemporary plateau basalt magma trappedand crystallized under closed-system conditions in a crustalreservoir at the developing East Greenland continental margin. KEY WORDS: bulk composition; emplacement; mass proportions; Skaergaard intrusion; structure  相似文献   
8.
张西坤  杨冬冰 《探矿工程》2004,31(7):35-36,47
介绍了SPS-600型散装水井钻机的主要技术参数,并对各主要参数进行了详细说明,同时介绍了研制过程中的配套要点。该钻机在实际施工中应用效果良好。  相似文献   
9.
We present an explicit extended finite element framework for fault rupture dynamics accommodating bulk plasticity near the fault. The technique is more robust than the standard split‐node method because it can accommodate a fault propagating freely through the interior of finite elements. To fully exploit the explicit algorithmic framework, we perform mass lumping on the enriched finite elements that preserve the kinetic energy of the rigid body and enrichment modes. We show that with this technique, the extended FE solution reproduces the standard split‐node solution, but with the added advantage that it can also accommodate randomly propagating faults. We use different elastoplastic constitutive models appropriate for geomaterials, including the Mohr–Coulomb, Drucker–Prager, modified Cam‐Clay, and a conical plasticity model with a compression cap, to capture off‐fault bulk plasticity. More specifically, the cap model adds robustness to the framework because it can accommodate various modes of deformation, including compaction, dilatation, and shearing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
Bulk mineral resources of iron ores, copper ores, bauxite, lead ores, zinc ores and potassium salt play a pivotal role on the world’s and China’s economic development. This study analyzed and predicted their resources base and potential, development and utilization and their world’s and China’s supply and demand situation in the future 20 years. The supply and demand of these six bulk mineral products are generally balanced, with a slight surplus, which will guarantee the stability of the international mineral commodity market supply. The six mineral resources(especially iron ores and copper ores) are abundant and have a great potential, and their development and utilization scale will gradually increase. Till the end of 2014, the reserveproduction ratio of iron, copper, bauxite, lead, zinc ores and potassium salt was 95 years, 42 years, 100 years, 17 years, 37 years and 170 years, respectively. Except lead ores, the other five types all have reserve-production ratio exceeding 20 years, indicative of a high resources guarantee degree. If the utilization of recycled metals is counted in, the supply of the world’s six mineral products will exceed the demand in the future twenty years. In 2015–2035, the supply of iron ores, refined copper, primary aluminum, refined lead, zinc and potassium salt will exceed their demand by 0.4–0.7 billion tons(Gt), 5.0–6.0 million tons(Mt), 1.1–8.9 Mt, 1.0–2.0 Mt, 1.2–2.0 Mt and 4.8–5.6 Mt, respectively. It is predicted that there is no problem with the supply side of bulk mineral products such as iron ores, but local or structural shortage may occur because of geopolitics, monopoly control, resources nationalism and trade friction. Affected by China’s compressed industrialized development model, the demand of iron ores(crude steel), potassium salt, refined lead, refined copper, bauxite(primary aluminum) and zinc will gradually reach their peak in advance. The demand peak of iron ores(crude steel) will reach around 2015, 2016 for potassium salt, 2020 for refined lead, 2021 for bauxite(primary aluminum), 2022 for refined copper and 2023 for zinc. China’s demand for iron ores(crude steel), bauxite(primary aluminum) and zinc in the future 20 years will decline among the world’s demand, while that for refined copper, refined lead and potassium salt will slightly increase. The demand for bulk mineral products still remains high. In 2015–2035, China’s accumulative demand for iron ores(crude steel) will be 20.313 Gt(13.429 Gt), 0.304 Gt for refined copper, 2.466 Gt(0.616 Gt) of bauxite(primary aluminum), 0.102 Gt of refined lead, 0.138 Gt of zinc and 0.157 Gt of potassium salt, and they account for the world’s YOY(YOY) accumulative demand of 35.17%, 51.09%, 48.47%, 46.62%, 43.95% and 21.84%, respectively. This proportion is 49.40%, 102.52%, 87.44%, 105.65%, 93.62% and 106.49% of that in 2014, respectively. From the supply side of China’s bulk mineral resources, it is forecasted that the accumulative supply of primary(mine) mineral products in 2015–2035 is 4.046 Gt of iron ores, 0.591 Gt of copper,1.129 Gt of bauxite, 63.661 Mt of(mine) lead, 0.109 Gt of(mine) zinc and 0.128 Gt of potassium salt, which accounts for 8.82%, 13.92%, 26.67%, 47.09%, 33.04% and 15.56% of the world’s predicted YOY production, respectively. With the rapid increase in the smelting capacity of iron and steel and alumina, the rate of capacity utilization for crude steel, refined copper, alumina, primary aluminum and refined lead in 2014 was 72.13%, 83.63%, 74.45%, 70.76% and 72.22%, respectively. During 2000–2014, the rate of capacity utilization for China’s crude steel and refined copper showed a generally fluctuating decrease, which leads to an insufficient supply of primary mineral products. It is forecasted that the supply insufficiency of iron ores in 2015–2035 is 17.44 Gt, 0.245 Gt of copper in copper concentrates, 1.337 Gt of bauxite, 38.44 Mt of lead in lead concentrates and 29.19 Mt of zinc in zinc concentrates. China has gradually raised the utilization of recycled metals, which has mitigated the insufficient supply of primary metal products to some extent. It is forecasted that in 2015–2035 the accumulative utilization amount of steel scrap(iron ores) is 3.27 Gt(5.08 Gt), 70.312 Mt of recycled copper, 0.2 Gt of recycled aluminum, 48 Mt of recycled lead and 7.7 Mt of recycled zinc. The analysis on the supply and demand situation of China’s bulk mineral resources in 2015–2035 suggests that the supply-demand contradiction for these six types of mineral products will decrease, indicative of a generally declining external dependency. If the use of recycled metal amount is counted in, the external dependency of China’s iron, copper, bauxite, lead, zinc and potassium salt will be 79%, 65%, 26%, 8%, 16% and 18% in 2014, respectively. It is predicted that this external dependency will decrease to 62%, 64%, 20%,-0.93%, 16% and 14% in 2020, respectively, showing an overall decreasing trend. We propose the following suggestions correspondingly.(1) The demand peak of China’s crude steel and potassium salt will reach during 2015–2023 in succession. Mining transformation should be planned and deployed in advance to deal with the arrival of this demand peak.(2) The supply-demand contradiction of China’s bulk mineral resources will mitigate in the future 20 years, and the external dependency will decrease accordingly. It is suggested to adjust the mineral resources management policies according to different minerals and regions, and regulate the exploration and development activities.(3) China should further establish and improve the forced mechanism of resolving the smelting overcapacity of steel, refined copper, primary aluminum, lead and zinc to really achieve the goal of "reducing excess production capacity".(4) In accordance with the national strategic deployment of "One Belt One Road", China should encourage the excess capacity of steel, copper, alumina and primary aluminum enterprises to transfer to those countries or areas with abundant resources, high energy matching degree and relatively excellent infrastructure. Based on the national conditions, mining condition and geopolitics of the resources countries, we will gradually build steel, copper, aluminum and lead-zinc smelting bases, and potash processing and production bases, which will promote the excess capacity to transfer to the overseas orderly.(5) It is proposed to strengthen the planning and management of renewable resources recycling and to construct industrial base of renewable metal recycling.(6) China should promote the comprehensive development and utilization of paragenetic and associated mineral species to further improve the comprehensive utilization of bulk mineral resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号