首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   2篇
地球物理   1篇
  2014年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
基于矢量图形的反走样技术及其应用   总被引:2,自引:0,他引:2  
介绍现行基于矢量图形反走样技术的几种实现方法,给出了一个较为适用的快速反走样算法,介绍了它的原理、算法并将它的结果在不同环境下与走样直线作了对比,最后利用它对数字地图和矢量字符进行了反走样分析。  相似文献   
2.
We reformulate the equation of reverse‐time migration so that it can be interpreted as summing data along a series of hyperbola‐like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction‐stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola‐like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction‐stack migration. This formulation leads to filters that can be applied to the generalized diffraction‐stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction‐stack migration images have fewer artefacts than those computed by the standard reverse‐time migration algorithm. The main drawback is that generalized diffraction‐stack migration is much more memory intensive and I/O limited than the standard reverse‐time migration method.  相似文献   
3.
Image aliasing is a problem appearing as artefacts in digitally resampled images, which degrades the quality of the image. In digital rectification and texture mapping, pixels from an input image are transformed to pixels of an output image. The discrete nature of a digital image causes aliasing in the transformed image. In this paper the source of aliasing and the theory of antialiasing are described. The necessity of a precise filter design in antialiasing is discussed and a filter based on a Kaiser adjustable window is designed. Different practical antialiasing methods are described as well as interpolation methods, which are conventional in photogrammetry. Selected antialiasing methods are implemented and applied to a close range image. An objective analysis is carried out by applying inverse transformations to rectified images and deriving some measures to estimate the information loss for each method by comparing original and reconstructed images. Results indicate that interpolation methods are not capable of removing or reducing aliasing in highly decimating transformations. The output images of interpolation methods therefore suffer from edge corruption and interfusion of small features. Applying a Kaiser filter with a precise antialiasing method results in the least information loss and considerably reduces aliasing at the expense of higher computation load.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号