首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2300篇
  免费   457篇
  国内免费   407篇
测绘学   119篇
大气科学   996篇
地球物理   791篇
地质学   504篇
海洋学   305篇
天文学   236篇
综合类   49篇
自然地理   164篇
  2024年   6篇
  2023年   17篇
  2022年   42篇
  2021年   58篇
  2020年   44篇
  2019年   69篇
  2018年   51篇
  2017年   74篇
  2016年   81篇
  2015年   95篇
  2014年   117篇
  2013年   134篇
  2012年   109篇
  2011年   205篇
  2010年   183篇
  2009年   212篇
  2008年   204篇
  2007年   148篇
  2006年   161篇
  2005年   134篇
  2004年   131篇
  2003年   106篇
  2002年   107篇
  2001年   92篇
  2000年   82篇
  1999年   77篇
  1998年   68篇
  1997年   56篇
  1996年   46篇
  1995年   36篇
  1994年   45篇
  1993年   36篇
  1992年   28篇
  1991年   21篇
  1990年   23篇
  1989年   19篇
  1988年   15篇
  1987年   5篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   6篇
  1975年   1篇
  1954年   2篇
排序方式: 共有3164条查询结果,搜索用时 15 毫秒
1.
The supply rates of Na and K to the atmosphere of Mercury by processes acting on the extreme surface—thermal vaporization, photon-stimulated desorption (PSD), and ion-sputtering—are limited by the rates at which atoms can be supplied to the extreme surface by diffusion from inside the regolith grains. Supply rates to the atmosphere are further regulated by ion retention and by gardening rates that supply new grains to the surface. We consider the limits on supply of sodium and potassium atoms to the atmosphere, and rates of photoion recycling to the surface. Thermal vaporization rates are severely limited by the ability of atoms to diffuse to the surface of the grain. Therefore, the diffusion-limited thermal vaporization rates on Mercury's surface are comparable to or less than the PSD rates. Ion sputtering is primarily due to highly ionized heavy ions, even though they represent a small fraction of the solar wind. We have shown that up to 60% of the Na photoions are deposited on the surface of Mercury. Ion recycling to the surface can have a long-term effect on the regolith abundance if an average recycling pattern persists such that more ions return to a particular area than are launched there. It is unknown whether the formation of latitude bands of >100% ion retention persist on average despite a rapidly changing magnetosphere. The total exospheric column of sodium observed at Mercury between 1997 to 2003 varied by a factor of 2-3 from perihelion to aphelion.  相似文献   
2.
3.
The HCN emission features near 3 μm recently detected by Geballe et al. (2003, Astrophys. J. 583, L39) are analyzed with a model for fluorescence of sunlight in the ν3 band of HCN. The emission spectrum is consistent with current knowledge of the atmospheric temperature profile and the HCN distribution inferred from millimeter-wave observations. The spectrum is insensitive to the abundance of HCN in the thermosphere and the thousand-fold enhancement relative to photochemical models suggested by Geballe et al. (2003, Astrophys. J. 583, L39) is not required to explain the observations. We find that the spectrum can be matched with temperatures from 130 to 200 K, with slightly better fits at high temperature, contrary to the temperature determination of 130±10 K of Geballe et al. (2003, Astrophys. J. 583, L39). The HCN emission spectrum is sensitive to the collisional de-excitation probability, P10, for the ν3 state and we determine a value of 10−5 with an accuracy of about a factor of two. Analysis of absorption lines in the C2H2ν3 band near 3 μm, detected in the same spectrum, indicate a C2H2 mole fraction near 0.01 μbar of 10−5 for P10=10−4. The derived mole fraction, however, is dependent upon the value adopted for P10 and lower values are required if P10 at Titan temperatures is less than its room temperature value.  相似文献   
4.
The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that plateau subsidence and chaos formation may have continued well into the Amazonian Period. The geologic and paleohydrologic histories presented here have important implications, as new mechanisms for outflow channel formation and other fluvial activity are described, and new reactivation mechanisms are proposed for the origin of chaotic terrain as contributors to flooding. Detailed geomorphic analysis indicates that subterranean caverns may have been exposed during chaos formation, and thus chaotic terrains mark prime locations for future geologic, hydrologic, and possible astrobiologic exploration.  相似文献   
5.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   
6.
Wang Yanhui 《水文研究》1992,6(2):241-251
Black locust (Robina pseudoacacia) has become one of the most important shelter species in the loess area of northwest China. This paper summarizes recent research concerning its hydrological influence, including canopy interception, litter absorption capacity, its effect on rainfall kinetic energy, infiltration rates, surface runoff, soil moisture, and evapotranspiration, and its role in soil conservation. Several predictive models are listed. on the basis of existing results, optimum characteristics for an effective plantation are defined, and problems requiring further research are identified.  相似文献   
7.
H Lammer  P Wurz  R Killen  S Massetti  A Milillo 《Icarus》2003,166(2):238-247
Mercury's close orbit around the Sun, its weak intrinsic magnetic field and the absence of an atmosphere (Psurface<1×10−8 Pa) results in a strong direct exposure of the surface to energetic ions, electrons and UV radiation. Thermal processes and particle-surface-collisions dominate the surface interaction processes leading to surface chemistry and physics, including the formation of an exosphere (N?1014 cm−2) in which gravity is the dominant force affecting the trajectories of exospheric atoms. NASA's Mariner 10 spacecraft observed the existence of H, He, and O in Mercury's exosphere. In addition, the volatile components Na, K, and Ca have been observed by ground based instrumentation in the exosphere. We study the efficiency of several particle surface release processes by calculating stopping cross-sections, sputter yields and exospheric source rates. Our study indicates surface sputter yields for Na between values of about 0.27 and 0.35 in an energy range from 500 eV up to 2 keV if Na+ ions are the sputter agents, and about 0.037 and 0.082 at an energy range between 500 eV up to 2 keV when H+ are the sputter agents and a surface binding energy of about 2 eV to 2.65 eV. The sputter yields for Ca are about 0.032 to 0.06 and for K atoms between 0.054 to 0.1 in the same energy range. We found a sputter yield for O atoms between 0.025 and 0.04 for a particle energy range between 500 eV up to 2 keV protons. By taking the average solar wind proton surface flux at the open magnetic field line area of about 4×108 cm−2 s−1 calculated by Massetti et al. (2003, Icarus, in press) the resulting average sputtering flux for O is about 0.8-1.0×107 cm−2 s−1 and for Na approximately 1.3-1.6×105 cm−2 s−1 depending on the assumed Na binding energies, regolith content, sputtering agents and solar activity. By using lunar regolith values for K we obtain a sputtering flux of about 1.0-1.4×104 cm−2 s−1. By taking an average open magnetic field line area of about 2.8×1016 cm2 modelled by Massetti et al. (2003, Icarus, in press) we derive an average surface sputter rate for Na of about 4.2×1021 s−1 and for O of about 2.5×1023 s−1. The particle sputter rate for K atoms is about 3.0×1020 s−1 assuming lunar regolith composition for K. The sputter rates depend on the particle content in the regolith and the open magnetic field line area on Mercury's surface. Further, the surface layer could be depleted in alkali. A UV model has been developed to yield the surface UV irradiance at any time and latitude over a Mercury year. Seasonal and diurnal variations are calculated, and Photon Stimulated Desorption (PSD) fluxes along Mercury's orbit are evaluated. A solar UV hotspot is created towards perihelion, with significant average PSD particle release rates and Na fluxes of about 3.0×106 cm−2 s−1. The average source rates for Na particles released by PSD are about 1×1024 s−1. By using the laboratory obtained data of Madey et al. (1998, J. Geophys. Res. 103, 5873-5887) for the calculation of the PSD flux of K atoms we get fluxes in the order of about 104 cm−2 s−1 along Mercury's orbit. However, these values may be to high since they are based on idealized smooth surface conditions in the laboratory and do not include the roughness and porosity of Mercury's regolith. Further, the lack of an ionosphere and Mercury's small, temporally and spatially highly variable magnetosphere can result in a large and rapid increase of exospheric particles, especially Na in Mercury's exosphere. Our study suggests that the average total source rates for the exosphere from solar particle and radiation induced surface processes during quiet solar conditions may be of the same order as particles produced by micrometeoroid vaporization. We also discuss the capability of in situ measurements of Mercury's highly variable particle environment by the proposed NPA-SERENA instrument package on board ESA's BepiColombo Mercury Planetary Orbiter (MPO).  相似文献   
8.
本文主要依据地形图和航空照片解译,并经已有地质、钻孔资料验证及野外实地考察的方法来研究地形面及其变形特征,由此确定渭河盆地活断层的分布、最新活动特征及活动规律,为地震预报及地震危险性分析提供依据。  相似文献   
9.
Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10–15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.  相似文献   
10.
Coal seams burning underneath the surface are recognized all over the world and have drawn increasing public attention in the past years. Frequently, such fires are analyzed by detecting anomalies like increased exhaust gas concentrations and soil temperatures at the surface. A proper analysis presumes the understanding of involved processes, which determine the spatial distribution and dynamic behavior of the anomalies.In this paper, we explain the relevance of mechanical and energy transport processes with respect to the occurrence of temperature anomalies at the surface. Two approaches are presented, aiming to obtain insight into the underground coal fire situation: In-situ temperature mapping and numerical simulation. In 2000 to 2005, annual temperature mapping in the Wuda (Inner Mongolia, PR China) coal fire area showed that most thermal anomalies on the surface are closely related to fractures, where hot exhaust gases from the coal fire are released. Those fractures develop due to rock mechanical failure after volume reduction in the seams. The measured signals at the surface are therefore strongly affected by mechanical processes.More insight into causes and effects of involved energy transport processes is obtained by numerical simulation of the dynamic behavior of coal fires. Simulations show the inter-relation between release and transport of thermal energy in and around underground coal fires. Our simulation results show a time delay between the coal fire propagation and the observed appearance of the surface temperature signal. Additionally, the overall energy flux away from the burning coal seam into the surrounding bedrock is about 30-times higher than the flux through the surface. This is of particular importance for an estimation of the energy released based on surface temperature measurements. Finally, the simulation results also prove that a fire propagation rate estimated from the interpretation of surface anomalies can differ from the actual rate in the seam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号