首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
测绘学   2篇
  2020年   2篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Within-season forecasting of crop yields is of great economic, geo-strategic and humanitarian interest. Satellite Earth Observation now constitutes a valuable and innovative way to provide spatio-temporal information to assist such yield forecasts. This study explores different configurations of remote sensing time series to estimate of winter wheat yield using either spatially finer but temporally sparser time series (5daily at 100 m spatial resolution) or spatially coarser but denser (300 m and 1 km at daily frequency) time series. Furthermore, we hypothesised that better yield estimations could be made using thermal time, which is closer to the crop physiological development. Time series of NDVI from the PROBA-V instrument, which has delivered images at a spatial resolution of 100 m, 300 m and 1 km since 2013, were extracted for 39 fields for field and 56 fields for regional level analysis across Northern France during the growing season 2014-2015. An asymmetric double sigmoid model was fitted on the NDVI series of the central pixel of the field. The fitted model was subsequently integrated either over thermal time or over calendar time, using different baseline NDVI thresholds to mark the start and end of the cropping season. These integrated values were used as a predictor for yield using a simple linear regression and yield observations at field level. The dependency of this relationship on the spatial pixel purity was analysed for the 100 m, 300 m and 1 km spatial resolution. At field level, depending on the spatial resolution and the NDVI threshold, the adjusted ranged from 0.20 to 0.74; jackknifed – leave-one-field-out cross validation – RMSE ranged from 0.6 to 1.07 t/ha and MAE ranged between 0.46 and 0.90 t/ha for thermal time analysis. The best results for yield estimation (adjusted = 0.74, RMSE =0.6 t/ha and MAE =0.46 t/ha) were obtained from the integration over thermal time of 100 m pixel resolution using a baseline NDVI threshold of 0.2 and without any selection based on pixel purity. The field scale yield estimation was aggregated to the regional scale using 56 fields. At the regional level, there was a difference of 0.0012 t/ha between thermal and calendar time for average yield estimations. The standard error of mean results showed that the error was larger for a higher spatial resolution with no pixel purity and smaller when purity increased. These results suggest that, for winter wheat, a finer spatial resolution rather than a higher revisit frequency and an increasing pixel purity enable more accurate yield estimations when integrated over thermal time at the field scale and at the regional scale only if higher pixel purity levels are considered. This method can be extended to larger regions, other crops, and other regions in the world, although site and crop-specific adjustments will have to include other threshold temperatures to reflect the boundaries of phenological activity. In general, however, this methodological approach should be applicable to yield estimation at the parcel and regional scales across the world.  相似文献   
2.
Land surface phenology has been widely retrieved although no consensus exists on the optimal satellite dataset and the method to extract phenology metrics. This study is the first comprehensive comparison of vegetation variables and methods to retrieve land surface phenology for 1999–2017 time series of Copernicus Global Land products derived from SPOT-VEGETATION and PROBA-V data. We investigated the sensitivity of phenology to (I) the input vegetation variable: normalized difference vegetation index (NDVI), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fraction of vegetation cover (FCOVER); (II) the smoothing and gap filling method for deriving seasonal trajectories; and (III) the method to extract phenological metrics: thresholds based on a percentile of the annual amplitude of the vegetation variable, autoregressive moving averages, logistic function fitting, and first derivative methods. We validated the derived satellite phenological metrics (start of the season (SoS) and end of the season (EoS)) using available ground observations of Betula pendula, B. alleghaniensis, Acer rubrum, Fagus grandifolia, and Quercus rubra in Europe (Pan-European PEP725 network) and the USA (National Phenology Network, USA-NPN). The threshold-based method applied to the smoothed and gap-filled LAI V2 time series agreed best with the ground phenology, with root mean square errors of ˜10 d and ˜25 d for the timing of SoS and EoS respectively. This research is expected to contribute for the operational retrieval of land surface phenology within the Copernicus Global Land Service.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号