首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
测绘学   4篇
地球物理   3篇
地质学   5篇
自然地理   5篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2011年   2篇
  2009年   2篇
  2001年   2篇
排序方式: 共有17条查询结果,搜索用时 0 毫秒
1.
The wild horse Equus ferus was one of the most frequent species of the Late Pleistocene large ungulate fauna in Eurasia and played an important role in the subsistence of human groups, especially at the end the Late Glacial. It is frequently assumed that E. ferus became extinct in Europe at the beginning of the Holocene because of the development of woodlands and loss of open habitats. Because of its preference for open habitats and in spite of its adaptability, the appearance or disappearance of the wild horse could therefore be a suitable palaeoecological indicator for the opening of the Holocene primeval woodlands. We revised the dating and reliability of the subfossil record and dated several bones by atomic mass spectrometry 14C dating. From the beginning of the Holocene (9600 cal a BC) to the end of the Atlantic Period (3750 cal a BC) there are 207 archaeological sites with wild horse records available in Europe. E. ferus survived the Pleistocene Holocene transition in Europe, but the spatiotemporal dynamics of populations fluctuated remarkably in the early and middle Holocene. Small and sparse populations increasingly became extinct during the early Holocene, until between 7100 and 5500 cal a BC the wild horse was almost absent in central parts of the European Lowlands. Particular conditions in natural open patches in the canopy forests, chalklands and floodplains may have maintained the local survival of the horse in some regions of the Lowlands, however. In the Late Atlantic, between 5500 and 3750 cal a BC the range of the wild horse was again extended. It re‐immigrated into central and western Europe, probably as a consequence of increasing landscape opening by Neolithic peoples. The data presented here may be a valuable part of the debate on the degree of openness of the early and middle Holocene landscape. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
The article analyses the results of the scheme for field afforestation (EU-regulation 2080/92) in Denmark. The purpose is twofold, firstly to document the afforestation on arable land taking place both within the scheme and outside the scheme for field afforestation. The former is documented in Ribe and Vejle counties whereas the latter is documented in three smaller areas: Varde, Vorbasse, and Vejle. Secondly, the article argues that in order to evaluate the afforestation not only the location within designated areas hut also the spatial parameters and configuration of new woodlands must be considered. Two methods -'forest-pictures' and ‘gradient-pictures’-are presented and applied in order to quantify the spatial configuration of new woodlands in the landscape.  相似文献   
3.
Little is known about the effects of grazing on vegetation composition on the Arabian Peninsula. The aim of this study therefore was to analyse the vegetation response to environmental conditions of open woodlands along an altitudinal and a grazing gradient in the Jabal al Akhdar mountain range of Oman. The species composition, vegetation structure, grazing damage and several environmental variables were investigated for 62 samples using a nested plot design. Classification analysis and a Canonical Variate Analysis (CVA) were used to define vegetation types and to identify underlying environmental gradients. The relationship between environmental variables and diversity was analysed using correlation coefficients and a main-effects ANOVA. The plant species richness followed a unimodal distribution along the altitudinal gradient with the highest number of species at the intermediate altitudinal belt. The cluster analysis led to five vegetation groups: The Sideroxylon mascatenseDodonaea viscosa group on grazed and the Olea europaeaFingerhuthia africana group on ungrazed plateau sites at 2000 m a.s.l., the Ziziphus spina-christiNerium oleander group at wadi sites and the Moringa peregrinaPteropyrum scoparium group at 1200 m a.s.l, and the Acacia gerrardiiLeucas inflata group at 1700 m a.s.l. The CVA indicated a clear distinction of the groups obtained by the agglomerative cluster analysis. The landform, altitude and grazing intensity were found to be the most important variables distinguishing between clusters. Overgrazing of the studied rangeland is an increasing environmental problem, whereas the plant composition at ungrazed sites pointed to a relatively fast and high regeneration potential of the local vegetation.  相似文献   
4.
Quantification of forest degradation in monitoring and reporting as well as in historic baselines is among the most challenging tasks in national REDD+ strategies. However, a recently introduced option is to base monitoring systems on subnational conditions such as prevalent degradation activities. In Tanzania, charcoal production is considered a major cause of forest degradation, but is challenging to quantify due to sub-canopy biomass loss, remote production sites and illegal trade. We studied two charcoal production sites in dry Miombo woodland representing open woodland conditions near human settlements and remote forest with nearly closed canopies. Supervised classification and adaptive thresholding were applied on a pansharpened QuickBird (QB) image to detect kiln burn marks (KBMs). Supervised classification showed reasonable detection accuracy in the remote forest site only, while adaptive thresholding was found acceptable at both locations. We used supervised classification and manual digitizing for KBM delineation and found acceptable delineation accuracy at both sites with RMSEs of 25–32% compared to ground measurements. Regression of charcoal production on KBM area delineated from QB resulted in R2s of 0.86–0.88 with cross-validation RMSE ranging from 2.22 to 2.29 Mg charcoal per kiln. This study demonstrates, how locally calibrated remote sensing techniques may be used to identify and delineate charcoal production sites for estimation of charcoal production and associated extraction of woody biomass.  相似文献   
5.
Reviews     
  相似文献   
6.
This special issue (SI) ‘A Tribute to Edward P. Glenn (1947-2017): A legacy of Scientific Environmental Assessment and Applications in Hydrological Processes’ is a celebration of the extensive work of Dr. Ed Glenn that was instrumental across multiple sub-disciplines of hydrology. The SI highlights four primary areas of hydrological processes that are cornerstones of Ed Glenn's over four decades of research. These contributions cover the following specialties: (i) Hydrology in the Colorado River Delta; (ii) Riparian ecosystem water use; (iii) Riparian Plant ecophysiology and ecohydrology; and (iv) Methods and models to characterize evapotranspiration. Since Ed was passionate about the dryland delta at the end of the Colorado River, we begin with four research studies that focus on this special region on the U.S.–Mexico border which encompasses four states (Baja and Sonora in Mexico and California and Arizona in United States) as well as tribal communities in the transboundary area. The Colorado River delta reaches the Northern Gulf of California in the Sea of Cortez which has been designated as a UNESCO international biosphere reserve (‘Reserva de la Biosfera El Pinacate y Gran Desierto de Altar’), which includes the Upper Gulf of California and Delta of the Colorado River (‘Reserva de la Biosfera Alto Golfo de California y Delta del Río Colorado’). Ed spent the majority of his last three decades on water balance studies and on ground-based transpiration quantification for validation of satellite and airborne remote sensing methods. We wrap up the special issue with contributions related to improving satellite and airborne remote sensing estimation of actual evapotranspiration. It is our pleasure to summarize the 16 research studies contributed to the special issue to honour Ed Glenn's research interests.  相似文献   
7.
In this study, we tested whether the inclusion of the red-edge band as a covariate to vegetation indices improves the predictive accuracy in forest carbon estimation and mapping in savanna dry forests of Zimbabwe. Initially, we tested whether and to what extent vegetation indices (simple ratio SR, soil-adjusted vegetation index and normalized difference vegetation index) derived from high spatial resolution satellite imagery (WorldView-2) predict forest carbon stocks. Next, we tested whether inclusion of reflectance in the red-edge band as a covariate to vegetation indices improve the model's accuracy in forest carbon prediction. We used simple regression analysis to determine the nature and the strength of the relationship between forest carbon stocks and remotely sensed vegetation indices. We then used multiple regression analysis to determine whether integrating vegetation indices and reflection in the red-edge band improve forest carbon prediction. Next, we mapped the spatial variation in forest carbon stocks using the best regression model relating forest carbon stocks to remotely sensed vegetation indices and reflection in the red-edge band. Our results showed that vegetation indices alone as an explanatory variable significantly (p < 0.05) predicted forest carbon stocks with R2 ranging between 45 and 63% and RMSE ranging from 10.3 to 12.9%. However, when the reflectance in the red-edge band was included in the regression models the explained variance increased to between 68 and 70% with the RMSE ranging between 9.56 and 10.1%. A combination of SR and reflectance in the red edge produced the best predictor of forest carbon stocks. We concluded that integrating vegetation indices and reflectance in the red-edge band derived from high spatial resolution can be successfully used to estimate forest carbon in dry forests with minimal error.  相似文献   
8.
Accurate and up-to-date information on forest dendrometric traits, such as above ground biomass is important in understanding the contribution of terrestrial ecosystems to the regulation of atmsopheric carbon, especially in the face of global environmental change. Besides, dendrometric traits information is critical in assessing the healthy and the spatial planning of fragile ecosystems, such as the savanna dry forests. The aim of this work was to test whether red-edge spectral data derived from WorldView-2 multispectral imagery improve biomass estimation in savanna dry forests. The results of this study have shown that biomass estimation using all Worldview-2 raw spectral bands without the red-edge band yielded low estimation accuracies (R2 of 0.67 and a RMSE-CV of 2.2 t ha?1) when compared to when the red-edge band was included as a co-variate (R2 of 0.73 and a RMSE-CV of 2.04 t ha?1). Also, similar results were obseved when all WorldView-2 vegetation indices (without the red-edge computed ones), producing slightly low accuracies (R2 of about 0.67 and a RMSE-CV of 2.20 t ha?1), when compared to those obtained using all indices and RE-computed indices(R2 of 0.76 and a RMSE-CV of 1.88 t ha?1). Overall, the findings of this work have demontrated the potential and importance of strategically positioned bands, such as the red-edge band in the optimal estimation of indigeonus forest biomass. These results underscores the need to shift towards embracing sensors with unique and strategeically positioned bands, such as the forthcoming Sentinel 2 MSI and HysPIRI which have a global footprint.  相似文献   
9.
Landscapes bear witness to past and present natural and societal processes influencing the environment and human livelihoods. By analysing landscape change at different spatial scales over time the effects on the environment and human livelihoods of various external and internal driving forces of change can be studied. This paper presents such an analysis of miombo woodland surrounding the Mkata plains in central Tanzania. The rich natural landscape diversity of the study area in combination with its historical and political development makes it an ideal observation ground for this kind of study. The paper focuses on long‐term physical and biological changes, mainly based on satellite information but also on field studies and a review of documents and literature. The miombo woodlands are highly dynamic semi‐arid ecosystems found on a number of nutrient‐poor soil groups. Most of the woodlands are related to an old, low‐relief geomorphology of erosion surfaces with relatively deep and leached soils, or to a lesser extent also on escarpments and steep Inselberg slopes with poor soils. Each period in the past has cast its footprints on the landscape development and its potential for a sustainable future use. On a regional level there has been a continual decrease in forest area over time. Expansion of agriculture around planned villages, implemented during the 1970s, in some cases equals the loss of forest area (Mikumi‐Ulaya), whilst in other areas (Kitulangalo), the pre‐independence loss of woodland was small; the agricultural area was almost the same during the period 1975–1999, despite the fact that forests have been lost at an almost constant rate over the same period. Illegal logging and charcoal production are likely causes because of the proximity to the main highway running through the area. Contrasting to the general regional pattern are the conditions in a traditional village (Ihombwe), with low immigration of people and a maintained knowledge of the resource potential of the forest with regards to edible plants and animals. In this area the local community has control of the forest resources in a Forest Reserve, within which the woody vegetation has increased in spite of an expansion of agriculture on other types of village land. The mapping procedure has shown that factors such as access to transport and lack of local control have caused greater deforestation of certain areas than during the colonial period. Planned villages have furthermore continued to expand over forest areas well after their implementation, rapidly increasing the landscape fragmentation. One possible way to maintain landscape and biodiversity values is by the sustainable use of traditional resources, based on local knowledge of their management as illustrated by the little change observed in the traditionally used area.  相似文献   
10.
Semi-arid riparian woodlands face threats from increasing extractive water demand and climate change in dryland landscapes worldwide. Improved landscape-scale understanding of riparian woodland water use (evapotranspiration, ET) and its sensitivity to climate variables is needed to strategically manage water resources, as well as to create successful ecosystem conservation and restoration plans for potential climate futures. In this work, we assess the spatial and temporal variability of Cottonwood (Populus fremontii)-Willow (Salix gooddingii) riparian gallery woodland ET and its relationships to vegetation structure and climate variables for 80 km of the San Pedro River corridor in southeastern Arizona, USA, between 2014 and 2019. We use a novel combination of publicly available remote sensing, climate and hydrological datasets: cloud-based Landsat thermal remote sensing data products for ET (Google Earth Engine EEFlux), Landsat multispectral imagery and field data-based calibrations to vegetation structure (leaf-area index, LAI), and open-source climate and hydrological data. We show that at landscape scales, daily ET rates (6–10 mm day−1) and growing season ET totals (400–1,400 mm) matched rates of published field data, and modelled reach-scale average LAI (0.80–1.70) matched lower ranges of published field data. Over 6 years, the spatial variability of total growing season ET (CV = 0.18) exceeded that of temporal variability (CV = 0.10), indicating the importance of reach-scale vegetation and hydrological conditions for controlling ET dynamics. Responses of ET to climate differed between perennial and intermittent-flow stream reaches. At perennial-flow reaches, ET correlated significantly with temperature, whilst at intermittent-flow sites ET correlated significantly with rainfall and stream discharge. Amongst reaches studied in detail, we found positive but differing logarithmic relationships between LAI and ET. By documenting patterns of high spatial variability of ET at basin scales, these results underscore the importance of accurately accounting for differences in woodland vegetation structure and hydrological conditions for assessing water-use requirements. Results also suggest that the climate sensitivity of ET may be used as a remote indicator of subsurface water resources relative to vegetation demand, and an indicator for informing conservation management priorities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号