首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
测绘学   1篇
地质学   16篇
天文学   1篇
自然地理   9篇
  2024年   1篇
  2018年   2篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2009年   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1998年   2篇
  1984年   1篇
排序方式: 共有27条查询结果,搜索用时 265 毫秒
1.
In Memory of Fire, a poetic narration of the history of the Americas from pre-Columbian times to the late 20th century, Eduardo Galeano furnishes readers with over 1200 of his trademark vignettes, some 35 of which pertain to Guatemala. Galeano evokes disparate aspects of the geography of Guatemala, past and present, in grounded miniatures of time, place, and episode. His sketches of the experiences of Maya peoples allow us to see them as survivors of three cycles of conquest: (1) conquest by imperial Spain; (2) conquest by local and international capitalism; and (3) conquest by state terror. Composed in the literary mode of creative non-fiction, Memory of Fire serves as an inspirational classroom text, exposing students not only to factual detail but also a powerful artistic imagination.  相似文献   
2.
Stratigraphic shifts in the oxygen isotopic (18O) and trace element (Mg and Sr) composition of biogenic carbonate from tropical lake sediment cores are often interpreted as a proxy record of the changing relation between evaporation and precipitation (E/P). Holocene 18O and Mg and Sr records from Lakes Salpetén and Petén Itzá, Guatemala were apparently affected by drainage basin vegetation changes that influenced watershed hydrology, thereby confounding paleoclimatic interpretations. Oxygen isotope values and trace element concentrations in the two lowland lakes were greatest between ~ 9000 and 6800 14C-yr BP, suggesting relatively high E/P, but pollen data indicate moist conditions and extensive forest cover in the early Holocene. The discrepancy between pollen- and geochemically-inferred climate conditions may be reconciled if the high early Holocene 18O and trace element values were controlled principally by low surface runoff and groundwater flow to the lake, rather than high E/P. Dense forest cover in the early Holocene would have increased evapotranspiration and soil moisture storage, thereby reducing delivery of meteoric water to the lakes. Carbonate 18O and Mg and Sr decreased between 7200 and 3500 14C-yr BP in Lake Salpetén and between 6800 and 5000 14C-yr BP in Lake Petén Itzá. This decline coincided with palynologically documented forest loss that may have led to increased surface and groundwater flow to the lakes. In Lake Salpetén, minimum 18O values (i.e., high lake levels) occurred between 3500 and 1800 14C-yr BP. Relatively high lake levels were confirmed by 14C-dated aquatic gastropods from subaerial soil profiles ~ 1.0–7.5 m above present lake stage. High lake levels were a consequence of lower E/P and/or greater surface runoff and groundwater inflow caused by human-induced deforestation.  相似文献   
3.
We report high-resolution macroscopic charcoal, pollen and sedimentological data for Agua Caliente, a freshwater lagoon located in southern Belize, and infer a late Holocene record of human land-use/climate interactions for the nearby prehistoric Maya center of Uxbenká. Land-use activities spanning the initial clearance of forests for agriculture through the drought-linked Maya collapse and continuing into the historic recolonization of the region are all reflected in the record. Human land alteration in association with swidden agriculture is evident early in the record during the Middle Preclassic starting ca. 2600 cal yr BP. Fire slowly tapered off during the Late and Terminal Classic, consistent with the gradual political demise and depopulation of the Uxbenká polity sometime between ca. 1150 and 950 cal yr BP, during a period of multiple droughts evident in a nearby speleothem record. Fire activity was at its lowest during the Maya Postclassic ca. 950–430 cal yr BP, but rose consistent with increasing recolonization of the region between ca. 430 cal yr BP and present. These data suggest that this environmental record provides both a proxy for 2800 years of cultural change, including colonization, growth, decline, and reorganization of regional populations, and an independent confirmation of recent paleoclimate reconstructions from the same region.  相似文献   
4.
5.
The Altos Cuchumatanes Range is made up of a core of igneous and metamorphic rocks, surrounded by lower Palaeozoic and Mesozoic sedimentary strata. These units constitute the westernmost exposure of basement rocks in Guatemala and represent some of the most important crustal units in the Maya Block. New laser ablation–inductively coupled plasma mass spectrometry U-Pb zircon geochronology allows better definition of their igneous ages, inheritance and petrologic evolution. The Altos Cuchumatanes magmatism occurred during the Middle Ordovician (461 Ma) and lower Pennsylvanian (312–317 Ma), replicating similar age trends present in southern Mexico (Acatlán Complex) and the Maya Block, from Chiapas to central Guatemala (Rabinal-Salamá area) and Belize (Maya Mountains). The U-Pb inheritance from cores of the studied zircons makes it possible to decipher the pre-magmatic history of the area. During the Late Ordovician to Permo-Carboniferous, the Altos Cuchumatanes and Maya Block were located adjacent to northeastern Mexico, near the Mixteco terrane, where Ordovician megacrystic granites intruded a passive-margin sedimentary sequence. The Ordovician granites present at the southern limit of the Maya Block, in the Altos Cuchumatanes, in central Guatemala and in Belize, are the result of partial crustal melting during the initial opening of the Rheic Ocean, when both Maya and Mixteco terranes would have lain close to NW Gondwana until the closure of that ocean. The crystallization of the early Pennsylvanian granites seems to be the result of an E-dipping subduction zone that accommodated convergence between Laurentia and Gondwana.  相似文献   
6.
7.
We used multiple variables in a sediment core from Lake Peten-Itza, Peten, Guatemala, to infer Holocene climate change and human influence on the regional environment. Multiple proxies including pollen, stable isotope geochemistry, elemental composition, and magnetic susceptibility in samples from the same core allow differentiation of natural versus anthropogenic environmental changes. Core chronology is based on AMS 14C measurement of terrestrial wood and charcoal and thus avoids the vagaries of hard-water-lake error. During the earliest Holocene, prior to 9000 14C yr BP, the coring site was not covered by water and all proxies suggest that climatic conditions were relatively dry. Water covered the coring site by 9000 14C yr BP, coinciding with filling of other lakes in Peten and farther north on the Yucatan Peninsula. During the early Holocene (9000 to 6800 14C yr BP), pollen data suggest moist conditions, but high 18O values are indicative of relatively high E/P. This apparent discrepancy may be due to a greater fractional loss of the lake's water budget to evaporation during the early stages of lake filling. Nonetheless, conditions were moist enough to support semi-deciduous lowland forest. Decrease in 18O values and associated change in ostracod species at 6800 14C yr BP suggest a transition to even moister conditions. Decline in lowland forest taxa beginning 5780 14C yr BP may indicate early human disturbance. By 2800 14C yr BP, Maya impact on the environment is documented by accelerated forest clearance and associated soil erosion. Multiple proxies indicate forest recovery and soil stabilization beginning 1100 to 1000 14C yr BP, following the collapse of Classic Maya civilization.  相似文献   
8.
Core MAN015 from Pacific coastal Guatemala contains sediments accumulated in a mangrove setting over the past 6500 yr. Chemical, pollen, and phytolith data, which indicate conditions of estuarine deposition and terrigenous inputs from adjacent dry land, document Holocene climate variability that parallels the Maya lowlands and other New World tropical locations. Human population history in this region may be driven partly by climate variation: sedentary human populations spread rapidly through the estuarine zone of the lower coast during a dry and variable 4th millennium B.P. Population growth and cultural florescence during a long, relatively moist period (2800–1200 B.P.) ended around 1200 B.P., a drying event that coincided with the Classic Maya collapse.  相似文献   
9.
ABSTRACT. Chunchucmil, on the Yucatán Peninsula, was densely populated in the Maya Late Classic period (ca. a.d. 550–830), even though it depends principally on groundwater. In the 1990s, hydrologic investigations were conducted to determine whether groundwater could have met domestic and agricultural needs. The region's groundwater is near the surface and is influenced by sea‐level fluctuations; however, geochemical analysis revealed that groundwater quality is not affected by mixing with seawater. The potential exists for high and spatially extensive nitrate contamination in this karstic area, yet water‐quality analyses revealed only moderate levels of nitrate in the groundwater. Agricultural limitations are imposed by chloride, total dissolved solids, and salinity, as indicated by electrical conductivity; domestic water use is limited by the presence of nitrate, sulfate, and chloride. Throughflow in the ring of cenotes (sinkholes) around the Chicxulub impact crater may explain the movement and spatial distribution of water‐quality constituents in Chunchucmil's groundwater.  相似文献   
10.

Little agroecological research examines indigenous agroforestry practices that appear to be unsustainable, and how such practices devolved from more environmentally sound land use strategies that have been documented by geographers and others. This paper discusses the political ecological factors that led the Mopan Maya to reject a diverse swidden-fallow management strategy for a system where an abandoned milpa provides few forest products. In doing so, this paper explains the process whereby cultural change, in this case rejection of certain agricultural traditions, leads to a less diverse agricultural landscape and ultimately a less diverse biological landscape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号