首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9709篇
  免费   1088篇
  国内免费   882篇
测绘学   5222篇
大气科学   1141篇
地球物理   1499篇
地质学   1297篇
海洋学   732篇
天文学   219篇
综合类   1233篇
自然地理   336篇
  2024年   24篇
  2023年   73篇
  2022年   138篇
  2021年   209篇
  2020年   270篇
  2019年   332篇
  2018年   210篇
  2017年   385篇
  2016年   380篇
  2015年   452篇
  2014年   553篇
  2013年   630篇
  2012年   705篇
  2011年   686篇
  2010年   562篇
  2009年   723篇
  2008年   698篇
  2007年   755篇
  2006年   678篇
  2005年   531篇
  2004年   462篇
  2003年   385篇
  2002年   329篇
  2001年   278篇
  2000年   222篇
  1999年   167篇
  1998年   203篇
  1997年   128篇
  1996年   103篇
  1995年   77篇
  1994年   70篇
  1993年   66篇
  1992年   49篇
  1991年   28篇
  1990年   33篇
  1989年   27篇
  1988年   16篇
  1987年   15篇
  1986年   8篇
  1985年   3篇
  1984年   6篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
青藏高原隆升的非线性动态有限元仿真研究   总被引:7,自引:4,他引:3  
根据青藏高原的地质特征建立分析模型,采用3维动态有限元方法,在计算仿真板块速度场的基础上,计算在青藏高原的隆升过程中该地区地壳岩石的等效应力和位移随时间的变化,计算仿真得到的速度场与1998年GPS观测的速度场吻合良好;与过去一贯的假设相反,计算结果反映出地壳应力场不是静态的,而是此起彼伏,不断变化的,应力值最大且变化最剧烈的地区在克什米尔地区、鄂尔多斯地区和鲜水河-小江断裂带,与地震多发区域吻合。  相似文献   
2.
用双三次样条函数和GPS资料反演现今中国大陆构造形变场   总被引:38,自引:20,他引:18  
将中国大陆现今构造变动视为一种连续的地壳变形,利用双三次样条函数模拟了近期GPS测定的大陆内部及周边地区412个测站速率,反演大陆地区自洽的构造变动速度场和应变率场.模拟结果显示:印度板块与欧亚板块的碰撞、挤压是构成中国大陆内部岩石层水平形变的主要驱动力.印度板块在东喜马拉雅构造结深深插入青藏高原,造成地壳大规模的缩短和抬升.青藏高原东南部的喜马拉雅带、拉萨和羌塘地块以及青藏高原东南边的川滇地区,内部构造活动强烈,其内部的构造变形包含地壳碎片的冲断、褶皱和侧向逃逸.大陆地壳(或岩石圈)的增厚,尤其是喜马拉雅山脉南北向的快速缩短和青藏高原东西向的缓慢拉张,大约吸收了印欧板块会聚量的85%,西藏中东地区东西向的拉张速率达到了(16±2.0)mm/a,且顺时针方向扭转明显.印度板块相对欧亚板块运动的欧拉极为(29.7°N, 19.3°E, 0.392°/Ma);华南地块相对于欧亚大陆向东(102°±7.4°)南的运动速率是(11±1.54)mm/a,华南块体相对欧亚板块运动的欧拉极为(62.25°N, 126.56°E, 0.141°/Ma);塔里木地块相对较稳定,其西部运动速度高于东部运动速度,作顺时针方向旋转.总体上讲,中国大陆运动方向为北偏东呈辐射状,从西部近南北方向的运动转向东部地区东南方向的运动,绕东喜马拉雅构造结有一顺时针方向的旋转.横穿喜马拉雅构造带及青藏内部的南北向压缩速率为(19±2.0)mm/a,横穿西天山构造带的南北向压缩平均速率为(13±1.5)mm/a,横穿东天山构造带的南北向压缩平均速率为(6.0±1.4)mm/a.阿尔金断裂带的左旋走滑速率为(6±1.2)mm/a.  相似文献   
3.
初轨计算中的病态分析   总被引:5,自引:0,他引:5  
吴连大  贾沛璋 《天文学报》1997,38(3):288-296
本文对现有初轨计算方法进行病态性分析与误差分析;研究结果表明:病态对现有初轨算法的影响,主要来源于法方程系数中包含观测误差.系数行列式愈大,定轨精度的损失愈多,当■被随机误差项△μ淹盖时,现有初轨算法将失效.此外,仿真结果还显示:■与△μ的大小还极大地依赖观测弧段的空间位置,当观测弧段包含近站点作为中点时,■最大,而■小,此时定轨精度较高;当观测弧段位于近站点的某一侧时,■小,而■大,此时定轨精度较低,观测弧段愈偏离近站点,病态影响愈大;因而在观测时,应尽量使观测弧段与近站点对称(此时μ值较大),这是提高短弧定轨的一种有效途径.  相似文献   
4.
刘林  胡松杰 《天文学报》1996,37(3):285-293
对于改进的Encke方法,选择适当的参考轨道是一个关键.然而,对于人造地球卫星长弧轨道计算,目前所给出的几种参考轨道均需要逐段校正,这将给定轨问题带来附加的复杂性.本文将仔细探讨如何选择参考轨道和减少校正次数.  相似文献   
5.
GPS/LEO掩星观测的变分同化技术   总被引:6,自引:0,他引:6  
刘敏  郭鹏 《天文学进展》2006,24(1):27-42
在简单介绍GPS/LEO掩星探测大气的发展历史和科学意义之后,详细阐述了反演的基本原理;分析了标准反演中存在的问题,并说明一维变分同化(1DVAR)在反演方法中的重要性;给出了一维变分同化中价值函数的求解,以及各种同化因子;简单介绍了对当前气象学中普遍使用的四维变分同化(4DVAR);重点讨论了各种同化方法,以及使用各种同化因子的优缺点。最后,通过CHAMP卫星的观测实例分析,验证了GPS数据在数值天气预报(NWP)中的作用,以及相对于标准反演法一维变分对气象要素的改进。  相似文献   
6.
在GPS数据处理中 ,存在着误差影响、影响波的干扰、周跳和数据量大等问题。误差影响和影响波的干扰实质是在接收卫星信号时受到其它因素的影响 ;周跳是由于卫星信号的失锁而造成信号的不连续 ;数据量大是因为GPS观测需要采样间隔小又连续观测所致。由于小波理论具有时频分析、波形分解、特征提取和快速小波变换等特性 ,应用小波变换和波形分解可以解决误差影响和影响波的干扰的问题 ;应用特征提取可以解决周跳检测问题 ;应用快速小波变换可进行数据压缩  相似文献   
7.
IntroductionThe radiance leaving the earth-atmosphere sys-tem which can be sensed by a satellite borne ra-diometer is the sum of radiation emission fromtheearth surface and each atmospheric level that aretransmittedtothe top of the atmosphere.The radia-tion emissionfromthe earthsurface andthe radianceof each atmospheric level can be separated fromtheradiance at the top the atmospheric level a satellitemeasured.Thus,the earth surface parameters willbe retrieved from the surface radiance after a…  相似文献   
8.
在目前常用的周跳探测与修复方法基础上 ,提出了首先将观测资料按照观测历元不连续分成若干小弧段 ,然后利用差分法进行周跳探测 ,根据差分后周跳放大的特性判断周跳和野值 ,并确定其位置利用宽带组合和电离层组合的方法解算周跳大小。通过实例验证了其有效性。  相似文献   
9.
提出了一种基于格网DEM的粗差检测及剔除方法,其基本思想是对每个表面上的点,在坡度上,高程或突变量引起的形状不连续,可能被怀疑有误差,通过坡度上每个点,应用坡度逼近或改变量来计算,考虑坡度变化的相对值,并以这些相对值计算一个统计值为判断该点合法性的阈值,使计算结果更为可靠。  相似文献   
10.
应用GPS观测青藏高原东北缘应力场变化   总被引:2,自引:0,他引:2  
采用各向同性弹性地球模型推导了地面位移场速率与地壳内任意点应力场变化的边界积分关系,同时利用青藏高原东北缘1999~2001年观测的GPS资料对观测区地壳深度为5 km和25 km的主应力和最大剪应力进行了计算分析.结果表明,青藏高原东北缘的主应力变化主要集中在祁连山断裂、海原断裂等,在1920~1954年间历史上发生过多次震级为7.0~8.5级强震的断裂附近,并具有主应力变化沿断层走向分布、最大剪应力沿断层走向交替变化等特征.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号