首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23593篇
  免费   2953篇
  国内免费   3361篇
测绘学   7436篇
大气科学   2954篇
地球物理   4524篇
地质学   6842篇
海洋学   2256篇
天文学   1694篇
综合类   1900篇
自然地理   2301篇
  2024年   135篇
  2023年   307篇
  2022年   771篇
  2021年   978篇
  2020年   1022篇
  2019年   1053篇
  2018年   786篇
  2017年   1226篇
  2016年   1157篇
  2015年   1162篇
  2014年   1418篇
  2013年   1703篇
  2012年   1442篇
  2011年   1364篇
  2010年   1086篇
  2009年   1361篇
  2008年   1476篇
  2007年   1576篇
  2006年   1472篇
  2005年   1296篇
  2004年   1135篇
  2003年   892篇
  2002年   846篇
  2001年   654篇
  2000年   572篇
  1999年   494篇
  1998年   412篇
  1997年   348篇
  1996年   282篇
  1995年   254篇
  1994年   231篇
  1993年   217篇
  1992年   153篇
  1991年   122篇
  1990年   96篇
  1989年   75篇
  1988年   79篇
  1987年   43篇
  1986年   38篇
  1985年   32篇
  1984年   22篇
  1983年   13篇
  1982年   17篇
  1981年   12篇
  1980年   10篇
  1979年   9篇
  1977年   13篇
  1972年   5篇
  1971年   7篇
  1954年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
3.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
4.
5.
利用钻孔测井资料并运用地层倾角测量信息分析法,给出了江汉盆地地应力最大水平主压应力方向为NE60~65°  相似文献   
6.
Representative results from a comparison of the chemical evolution of spherical collapse models without and with a intercloud medium are presented. The hot metal-rich gas distributes quickly the metals produced in supernovae throughout the galaxy, thus leading to a more homogeneous chemical evolution and flatter metallicity gradients in the gas and the stars. The stellar population is somewhat less concentrated towards the centre. The strong outflow results in a substantial loss of metals from the galaxy to its surroundings, and a lower effective yield in the galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
We have developed a method for analytically solving the porous medium flow equation in many different geometries for horizontal (two‐dimensional), homogeneous and isotropic aquifers containing impermeable boundaries and any number of pumping or injection wells located at arbitrary positions within the system. Solutions and results are presented for rectangular and circular aquifers but the method presented here is easily extendible to many geometries. Results are also presented for systems where constant head boundary conditions can be emulated internal to the aquifer boundary. Recommendations for extensions of the present work are briefly discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
8.
We suggest a new algorithm to remove systematic effects in a large set of light curves obtained by a photometric survey. The algorithm can remove systematic effects, such as those associated with atmospheric extinction, detector efficiency, or point spread function changes over the detector. The algorithm works without any prior knowledge of the effects, as long as they linearly appear in many stars of the sample. The approach, which was originally developed to remove atmospheric extinction effects, is based on a lower rank approximation of matrices, an approach which has already been suggested and used in chemometrics, for example. The proposed algorithm is especially useful in cases where the uncertainties of the measurements are unequal. For equal uncertainties, the algorithm reduces to the Principal Component Analysis (PCA) algorithm. We present a simulation to demonstrate the effectiveness of the proposed algorithm and we point out its potential, in the search for transit candidates in particular.  相似文献   
9.
Recent results on chaos in triaxial galaxy models are reviewed. Central mass concentrations like those observed in early-type galaxies - either stellar cusps, or massive black holes — render most of the box orbits in a triaxial potential stochastic. Typical Liapunov times are 3–5 crossing times, and ensembles of stochastic orbits undergo mixing on timescales that are roughly an order of magnitude longer. The replacement of the regular orbits by stochastic orbits reduces the freedom to construct self-consistent equilibria, and strong triaxiality can be ruled out for galaxies with sufficiently high central mass concentrations.  相似文献   
10.
The emergence of artificial neural network (ANN) technology has provided many promising results in the field of hydrology and water resources simulation. However, one of the major criticisms of ANN hydrologic models is that they do not consider/explain the underlying physical processes in a watershed, resulting in them being labelled as black‐box models. This paper discusses a research study conducted in order to examine whether or not the physical processes in a watershed are inherent in a trained ANN rainfall‐runoff model. The investigation is based on analysing definite statistical measures of strength of relationship between the disintegrated hidden neuron responses of an ANN model and its input variables, as well as various deterministic components of a conceptual rainfall‐runoff model. The approach is illustrated by presenting a case study for the Kentucky River watershed. The results suggest that the distributed structure of the ANN is able to capture certain physical behaviour of the rainfall‐runoff process. The results demonstrate that the hidden neurons in the ANN rainfall‐runoff model approximate various components of the hydrologic system, such as infiltration, base flow, and delayed and quick surface flow, etc., and represent the rising limb and different portions of the falling limb of a flow hydrograph. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号