首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38061篇
  免费   781篇
  国内免费   422篇
测绘学   817篇
大气科学   2549篇
地球物理   7231篇
地质学   14399篇
海洋学   3765篇
天文学   8272篇
综合类   93篇
自然地理   2138篇
  2022年   329篇
  2021年   536篇
  2020年   626篇
  2019年   698篇
  2018年   1280篇
  2017年   1247篇
  2016年   1379篇
  2015年   740篇
  2014年   1281篇
  2013年   2145篇
  2012年   1426篇
  2011年   1841篇
  2010年   1646篇
  2009年   1970篇
  2008年   1720篇
  2007年   1755篇
  2006年   1659篇
  2005年   1057篇
  2004年   1000篇
  2003年   914篇
  2002年   935篇
  2001年   790篇
  2000年   733篇
  1999年   615篇
  1998年   614篇
  1997年   586篇
  1996年   526篇
  1995年   478篇
  1994年   480篇
  1993年   397篇
  1992年   405篇
  1991年   395篇
  1990年   438篇
  1989年   324篇
  1988年   326篇
  1987年   401篇
  1986年   305篇
  1985年   435篇
  1984年   422篇
  1983年   378篇
  1982年   392篇
  1981年   332篇
  1980年   355篇
  1979年   304篇
  1978年   286篇
  1977年   267篇
  1976年   246篇
  1975年   252篇
  1974年   243篇
  1973年   242篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
3.
4.
Jurassic igneous bodies of the Sanandaj–Sirjan zone (SaSZ) in SW Iran are generally considered as a magmatic arc but critical evaluation of modern geochronology, geochemistry and radiogenic isotopes challenges this conclusion. There is no evidence for sustained igneous activity along the ~1,200 km long SaSZ, as expected for a convergent plate margin; instead activity was brief at most sites and propagated NW at ~20 mm/a. Jurassic igneous rocks define a bimodal suite of gabbro‐diorite and granite. Chemical and isotopic compositions of mafic rocks indicate subcontinental lithospheric mantle sources that mostly lacked subduction‐related modifications. The arc‐like features of S‐type granites reflect massive involvement of Cadomian crust and younger sediments to generate felsic melts in response to mafic intrusions. We conclude that Jurassic SaSZ igneous activity occurred in a continental rift, not an arc. SaSZ igneous rocks do not indicate that subduction along the SW margin of Eurasia began in Jurassic time.  相似文献   
5.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
6.
The impact of turbulent flow on plane strain fluid‐driven crack propagation is an important but still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic fracturing has experienced over the past decade, especially in the area of fracturing fluids, have played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Motivated by the increasing preponderance of high‐rate, water‐driven hydraulic fractures with high Reynolds number, we present a semianalytical solution for the propagation of a plane strain hydraulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses a power law relationship between the Darcy‐Weisbach friction factor and the scale of the fracture roughness, where one specific manifestation of this generalized friction factor is the classical Gauckler‐Manning‐Strickler approximation for turbulent flow in a rough‐walled channel. Conservation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a semianalytical solution using an orthogonal polynomial series. An approximate closed‐form solution is enabled by a choice of orthogonal polynomials embedding the near‐tip asymptotic behavior and thus giving very rapid convergence; a precise solution is obtained with 2 terms of the series. By comparison with numerical simulations, we show that the transition region between the laminar and turbulent regimes can be relatively small so that full solutions can often be well approximated by either a fully laminar or fully turbulent solution.  相似文献   
7.
Abstract— Active capture is a new process for the incorporation of large quantities of heavy noble gases into growing surfaces. Adsorption in the conventional sense involves surface bonding by polarization (Van der Waals forces). What is referred to as “anomalous adsorption” of heavy noble gases involves chemical bonds and can occur when other (more chemically active) species are not available to preempt sites with unfilled bonds. Anomalous adsorption has been observed under conditions of fracture, vacuum deposition and ionizing radiation. Active capture depends upon anomalous adsorption to retain noble gases on a surface long enough to be captured in a growing surface film as it is deposited. The fundamental principle may be the impingement onto the growing film with sufficient energy to liberate surface electrons (work function energy of a few electronvolts) so that they are retained by anomalous adsorption long enough to be entrapped in the growing surface. Trapping efficiencies of ?1% have been observed for Kr and Xe in laboratory experiments, implying a fundamentally new mechanism for the incorporation of heavy noble gases onto surfaces. It may play a role in explaining the large concentrations of planetary noble gases contained in phase‐Q.  相似文献   
8.
9.
10.
The magnetic-field distribution outside a flat, infinitely conductive unbounded disk in the field of a point magnetic dipole is determined. A relationship is established between the problem of magnetic-field determination and the problem of the flow of an ideal incompressible fluid around an infinitely thin disk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号