首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
地球物理   2篇
地质学   12篇
自然地理   7篇
  2015年   1篇
  2013年   4篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   3篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
2.
New U–Pb detrital zircon ages from Triassic metasandstones of the Torlesse Terrane in New Zealand are compared with 40Ar/39Ar muscovite data and together, reveal four main source components: (i) major, Triassic–Permian (210–270 Myr old) and (ii) minor, Permian–Carboniferous (280–350 Myr old) granitoids (recorded in zircon and muscovite data); (iii) minor, early middle Palaeozoic, metamorphic rocks, recorded mainly by muscovite, 420–460 Myr old, and (iv) minor, Late Precambrian–Cambrian igneous and metamorphic complexes, 480–570 Myr old, recorded by zircon only. There are also Proterozoic zircon ages with no clear grouping (580–1270 Myr). The relative absence of late Palaeozoic (350–420 Myr old) components excludes granitoid terranes in the southern Lachlan Fold Belt (Australia) and its continuation into North Victoria Land (East Antarctica) and Marie Byrd Land (West Antarctica) as a potential source for the Torlesse. The age data are compatible with derivation from granitoid terranes of the northern New England Orogen (and hinterland) in NE Australia. This confirms that the Torlesse Terrane of New Zealand is a suspect terrane, that probably originated at the NE Australian, Permian–Triassic, Gondwanaland margin and then (200–120 Ma) moved 2500 km southwards to its present New Zealand position by the Late Cretaceous (90 Ma). This sense of movement is analogous to that suggested for Palaeozoic Mesozoic terranes at the North American Pacific margin.  相似文献   
3.
A fault plane solution using theoretical P seismograms   总被引:1,自引:0,他引:1  
We use the method of Hudson and Douglas, Hudson & Blarney to compute seismograms which simulate the codas of 10 short period P -wave seismograms from a shallow earthquake. The polarities and relative amplitudes of P and pP measured from seven of the observed seismograms are used to compute a fault plane solution with confidence limits, assuming that the source radiates as a double couple. This solution is in approximate agreement with that given for the same earthquake by Sykes & Sbar, who used only the onset polarities of short-period P waves. The small difference between the two solutions can be explained by interference between the true first motion of P and microseismic noise at two stations.
The results show that, for some shallow earthquakes, the relative amplitude method has the following advantages over the first motions method. First, a P/pP amplitude ratio (with appropriate confidence limits) can always be measured, even in seismograms which are so noisy that the first motion of P is uncertain. Second, the fault plane solutions obtained from relative amplitudes have known confidence limits. Finally, by using more information from each seismogram, the relative amplitude method requires considerably fewer seismograms than the first motions method.  相似文献   
4.
The Agnew–Wiluna greenstone belt in the Yilgarn Craton of Western Australia is the most nickel-sulfide-endowed komatiite belt in the world. The Agnew–Wiluna greenstone belt contains two mineralised units/horizons that display very different volcanological and geochemical features. The Mt Keith unit comprises >500 m-thick spinifex-free adcumulate-textured lenses, which are flanked by laterally extensive orthocumulate-textured units. Spinifex texture is absent from this unit. Disseminated nickel sulfides, interstitial to former olivine crystals, are concentrated in the lensoidal areas. Massive sulfides are locally present along the base or margins of the lenses or channels. The Cliffs unit is locally >150 m thick and comprises a sequence of differentiated spinifex-textured flow units. The basal unit is the thickest, and contains basal massive nickel-sulfide mineralisation. The Mt Keith and Cliffs units display important common features: (i) MgO contents of 25–30% in inferred parental magmas; and (ii) Al/Ti ratios of ~20 (Munro-type). However, the Mt Keith unit is highly crustally contaminated (e.g. LREE-enriched, high HFSEs), whereas the Cliffs unit does not display evidence of significant crustal assimilation. We argue that the distinct trace-element concentrations and profiles of the two komatiite units reflect their different emplacement style and country rocks: the Mt Keith unit is interpreted to have been emplaced as an intrusive sill into dacitic volcanic units whereas the Cliffs unit was extruded as lava flow onto tholeiitic basalts in a subaqueous environment. The mode of emplacement and nature of country rock is the single biggest factor in controlling mineralisation styles in komatiites. On the other hand, evidence of crustal contamination does not necessarily provide information of the prospectivity of komatiites to host Ni–Cu–(PGE) mineralisation, despite being a good proxy for the style of komatiite emplacement and the nature of country rocks.  相似文献   
5.
Zircons from mafic and felsic volcanic rocks in the type area of the Warrawoona Group, the basal Archaean greenstone succession of the eastern Pilbara Block, have been dated precisely using the ion-microprobe SHRIMP. The results allow two alternative time-frames for the duration of the Warrawoona Group, dependent on how the dated zircons are considered to relate to the volcanic rocks. Our favoured interpretation requires a hiatus of 135±5 Ma between the Duffer Formation at 3.46 Ga and the overlying felsic volcanic rocks of the Wyman Formation, and a hydrothermal or later magmatic origin for zircons of age 3.33 Ga within one Duffer Formation sample and the underlying metabasalts. The alternative time-frame requires a short time for deposition of the entire Group, less than 15 Ma at 3.33 Ga, and a xenocrystic origin for the 3.46 Ga zircons of the Duffer Formation. Outside the type area of the Warrawoona Group, the age of an intrusive granodiorite requires that greenstones be older than 3.43 Ga and the Group formed over an interval of > 120 Ma.Visibly different zircons within one of the Duffer Formation samples were found to be Palaeozoic in age and presumably constitute hydrothermal growth of new zircon within the rock at low temperature. Similar zircons were found within samples from other rock units but with a spread of Proterozoic ages.  相似文献   
6.
Sedimentological studies of the dominantly volcanic, ca. 3.5 b.y. Warrawoona Group, eastern Pilbara Block, Western Australia, indicate widespread shallow-water deposition. Many cherty metasediments within the ultramafic-mafic sequence represent silicified carbonate mud, sand, breccia and conglomerate, and show cross-lamination, ripple marks, scour-and-fill structures, and evidence of reworking. At North Pole, some cherty metasediments appear to be silicified and baritized gypsiferous evaporites, and contain microfossils. Felsic volcaniclastic rocks include pyroclastic deposits, cross-laminated tuffaceous metasediments and conglomerate. Subaerial volcanism apparently increased as deposition proceeded.The depositional basin was large, volcanically active and apparently shallow with subdued marginal relief. Felsic volcanoes formed topographic highs within the basin from which sheets of volcanically derived sediments interfingered with ultramafic-mafic volcanics. The Onverwacht Group of the Barberton Mountain Land, South Africa, is of similar age to the Warrawoona Group and probably represents a similar environment, but other greenstone belts may have formed in contrasting basins, possibly under differing tectonic regimes.  相似文献   
7.
S to P scattering at the 650 km discontinuity   总被引:1,自引:0,他引:1  
Summary. A search of seismograms recorded at the Warramunga seismic array (WRA) from events occurring below the Izu-Bonin Islands shows an arrival on some, but not all, of the records, with an onset at 25–30 s after P , which is not predicted by the standard travel-time tables. The slowness and azimuth of the phase show that it is generated almost in line with P , and the variation of arrival time with the hypocentral depth of the earthquake indicates that its origin lies on the receiver side of the source. It appears, in fact, to be an S to P conversion at a depth of 650–700 km, which is seen only when the receiver is close to a node of the P radiation pattern and an antinode for S so that its amplitude compared with that of P is at a maximum.
Finally, the duration of the phase indicates that it is not simply a refracted wave, but that it has a coda of scattered arrivals from lateral heterogeneity in the neighbourhood of 650 km below the Izu-Bonin Islands.  相似文献   
8.
9.
Summary. We describe a method which provides an estimate of the accuracy to which time-domain features of seismic signals can be measured in the presence of noise. Observed seismograms are simulated by adding random noise with the same frequency spectrum and signal-to-noise ratio to matching synthetic seismograms. The effect of noise on synthetic and observed P -wave first motions is used as an illustration. It is shown that the apparent reliability of such observations, as determined by visual estimation, is often illusory.  相似文献   
10.
The Mt Somers Volcanics are part of a suite of mid-Cretaceous (89 ± 2 Ma) intermediate to silicic volcanics, erupted onto an eroded surface of Torlesse sediments. Rock types vary from basaltic andesite to high-silica rhyolite. Andesites are medium- to high-K with phenocrysts of plagioclase, orthopyroxene and pigeonite. Dacites are peraluminous and commonly contain granulite facies xenoliths and garnet xenocrysts. Equilibrium mineral assemblages indicate metamorphic pressures of close to 6 kbar at 800°C. Rhyolites are peraluminous with phenocrysts of quartz, sanidine, plagioclase, biotite, garnet and orthopyroxene. The ferromagnesian phases show textural evidence of magmatic crystallization and are chemically distinct from xenocryst phases in dacites. Equilibrium assemblages indicate that early magmatic crystallization occurred at close to 7 kbar (20 km depth) at above 850°C, with melt-water contents of less than 3.5%. Major-element contents, trace-element contents and an initial 87Sr/86Sr ratio of 0.7085 indicate that the rhyolites formed by partial melting of dominantly quartzo-feldspathic Torlesse sediments, leaving a granulite-facies residue. The chemical variation displayed by the rhyolites is best explained by fractional crystallization of the observed high-pressure phenocryst assemblage. Most elements show a compositional gap between rhyolite and dacite. The major-element, trace-element and Sr isotope compositions of the intermediate lavas are best explained by assimilation of lower crustal material combined with fractional crystallization in mantle-derived tholeiitic magmas. Magmatism was the result of heat and magma flux from the mantle, during the change from compressive to extensional tectonics after the culmination of the Rangitata Orogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号