首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   2篇
地质学   2篇
海洋学   1篇
综合类   3篇
自然地理   3篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2000年   1篇
  1998年   1篇
  1985年   1篇
排序方式: 共有9条查询结果,搜索用时 625 毫秒
1
1.
2.
This study investigated morphological variation and biomass accumulation that occurred in Sida acuta and Chromolaena odorata plants grown in lead polluted soil under organic fertilizer amendment. The study was carried out in the screen house at the Biological Gardens of the Obafemi Awolowo University, Ile-Ife, Osun State. The experiment was a factorial combination of one heavy metal (Pb) at five levels of concentration (0, 200, 400, 800 and 1,000 mg/kg) in a completely randomized design, and were replicated three times for each of the two plants and two levels (0 g/kg and 9.4 g/kg) of organic fertilizer (OBD-Plus). Each pot was filled with 5 kg of air-dried and sieved soil and placed on a plastic tray for the collection of excess water. Two weeks after planting, seedlings of uniform height were transplanted from the nursery to experimental pots at the rate of one seedling per pot and grown for 10 weeks. The growth parameters of the plants were biomonitored for 7 weeks. After 10 weeks of treatment, the plants were harvested and dried to calculate the biomass accumulation. The two plant species performed better under fertilizer application than without it. For each of the plant species the growth parameters decreased as the levels of Pb concentration increased. Furthermore, the plants' biomass decreased significantly (p<0.05) as the levels of Pb concentration increased. The organic fertilizer helped to improve the plants' performance in lead-polluted soil.  相似文献   
3.
Previous studies carried out in the East China Sea (ECS) mud area focused on long-term environmental changes in sedimentary records during the Holoeene, especially during the mid-Holocene high-stand water levels period. These results indicate that sensitive grain size groups can be used as a sedimentary proxy to reconstruct the evolution of the East Asian Winter Monsoon (EAWM). The studies have been carried out mainly in the northern and middle portions of the Zhejiang-Fujian coastal mud, however, similar research in the southern portion and the comparison between sedimentary proxy and modern measured data of EAWM are lacking. In this paper, we focused on a sedimentary record of the past 100 years with an enhanced resolution of 1.8 years. Investigations of the southern end of the Zhejiang-Fujian coastal mud area were conducted on the basis of 21~Pb chronology, grain-size analysis and chemical element analysis. The correspondence between the mean grain size (Mz) of sediment sensitive grain size and the measured EAWM was confirmed for the first time. We found that during the recent 100 years, the variation of the mean grain size of the sensitive population in the southern portion of the Zhejiang-Fujian mud was mainly controlled by the EAWM intensity changes; and not directly related to changes in the sediment discharge from Datong station of the Changjiang River (DTSD). Finally, recent changes in the content of heavy metals in study area reflect the impact of human activities on the environment.  相似文献   
4.
Chen  Yu  Yang  Jichao  Dada  Olusegun A.  Yang  Yaomin  Lin  Zhen  Cui  Zhen  Xu  Yue  Yu  Hongjun  Liu  Baohua 《中国海洋湖沼学报》2020,38(3):665-678
Journal of Oceanology and Limnology - Magnetic minerals in marine sediments are often masked by the primary natural remanent magnetization and material source signals. In order to understand...  相似文献   
5.
Hala Lake is located in the Qilian Mountains, Qinghai Province, China, at 4,078?m a.s.l. Its sediments contain an archive of climate and hydrologic changes during the Late Quaternary, as it is located close to the area influenced by the East-Asian summer monsoon and westerly-driven air masses. Sedimentation patterns and depositional conditions within the lake were investigated using eight sediment cores from different water depths, and this information was used to evaluate the feasibility of using a single core to reconstruct past climate and hydrological conditions. Long core H7, from the center of the lake (65?m water depth) and core H8 from a western, near-shore location (20?m water depth), were compared in detail using sediment composition and geochemical data (X-ray fluorescence, loss-on-ignition and CNS analysis). Age models were constructed using 17 AMS radiocarbon dates and indicate negligible reservoir error for sediments from the lake center and?~1,000?year errors for the near-shore sediment core. Cores H1?CH5 and HHLS21-1 revealed a sediment succession from sand and silty clay to laminated clay on the southern side of the lake. Undisturbed, finely laminated sediments were found at water depths???15?m. Core H5 (2.5?m long), from 31?m water depth, yielded abundant green algal mats mixed with clayey lake deposits and was difficult to interpret. Algae occurred between 25 and 32?m water depth and influenced the dissolved oxygen content of the stratified lake. Comparison of cores H7 and H8 yielded prominent mismatches for different time periods, which may, in part, be attributed to internal lacustrine processes, independent of climate influence. We thus conclude that data from a single sediment core may lead to different climate inferences. Common shifts among proxy data, however, showed that major climate shifts, of regional to global significance, can be tracked and allow reconstruction of lake level changes over the last 24,000?years. Results indicate advance of glaciers into the lake basin during the LGM, at which time the lake experienced lowest levels, 25?C50?m below present stage. Stepwise refilling began at ca. 16 kyr BP and reached the ?25?m level during the B?lling/Aller?d warm phase, ca. 13.5 kyr BP. A desiccation episode falls within the Younger Dryas, followed by a substantial lake level rise during the first millennium of the Holocene, a result of climate warming, which promoted glacier melt. By ca. 7.6 kyr BP, the lake reached a stable high stand similar to the present level, which persisted until ca. 6 kyr BP. Disturbed sediments in core H7 indicate a single mass flow that was most likely triggered by a major seismic event?~8.5 kyr BP. Subsequent lake development remains unclear as a consequence of data mismatches, but may indicate a general trend to deteriorating conditions and lake level lowstands at ca. 5.0?C4.2, 2.0 and 0.5 kyr BP.  相似文献   
6.
The Mika uranium deposit is of the Central Massif vein-type. The deposit consists of a series of subparallel veins, similar to Lilljuthatten deposit (Sweden), with variable ore grade. Two main structural trends occur within the vicinity of Mika namely: (1) vertical N160E-N180E or N-S normal fault trend in which the brecciated granite has been permeated and cemented by silica ribbons; (2) N130E trend associated with reddish brown hematitized siliceous breccias filling open fractures. The N130E trend is younger, and it is a local, passive shear trend developed at the bends of the N-S faults. On a microscopic scale, samples from the N-S trend are rich in crude cubic-tetragonal prismatic crystals of uraninite and/or pitchblende ores occurring in association with a low-temperature greenschist mineral assemblage of chlorite, epidote, and mica. Conversely, samples from the N130E trend show widespread kaolinitisation, goethite formation and layering reminiscent of groundwater activity at shallow depths near the earth’s surface. The main uranium mineral in this zone is yellowish autunite. The model proposed here envisages that the mineralization was related to two separate processes. A first mineralization episode developed simultaneous with the greenschist mineral assemblage, and a second episode was related to remobilization and subsequent mineral concentration in the passive N130E open fractures by groundwater to form autunite. Such a model has far reaching implications for exploration. Although the secondary minerals along the N130E fractures are more obvious in the field, the potentially economic primary mineral concentrations may be concealed at greater depth in the N-S structures.  相似文献   
7.
Dada  Emmanuel  Hahn  Michael 《GeoJournal》2022,87(1):231-246
GeoJournal - This study examined the changes in the area of land occupied by cocoa plantation in Ondo state in order to provide useful information for effective agricultural policy to increase...  相似文献   
8.
Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension numerical model(MIKE 21) to reveal the tidal and wave dynamics in 2012, and conducts comparative analysis of the changes from 1996 to 2012. The results show that M2 amphidromic point moved southeastward by 11 km. It further reveals that the tides around the Yellow River mouth are relatively stable due to the small variations in the tidal constituents. Over the study period, there is no noticeable change in the distribution of tidal types and tidal range, and the mean tidal range off the river mouth during the period studied is 0.5–1.1 m. However, the tidal currents changed greatly due to large change in topography. It is observed that the area with strong tidal currents shifted from the old river mouth(1976–1996) to the modern river mouth(1996–present). While the tidal current speeds decreased continually off the old river mouth, they increased off the modern river mouth. The Maximum Tidal Current Speed(MTCS) reached 1.4 m s-1, and the maximum current speed of 50-year return period reached 2.8 m s-1. Waves also changed greatly due to change in topography. The significant wave height(H1/3) of 50-year return period changed proportionately with the water depth, and the ratio of H1/3 to depth being 0.4–0.6. H1/3 of the 50-year return period in erosion zone increased continually with increasing water depth, and the rate of change varied between 0.06 and 0.07 m yr-1. Based on the results of this study, we infer that in the future, the modern river mouth will protrude gradually northward, while the erosion zone, comprising the old river mouth and area between the modern river mouth and the old river mouth(Intermediate region) will continue to erode. As the modern river mouth protrudes towards the sea, there will be a gradual increase in the current speed and decrease in wave height. Conversely, the old river mouth will retreat, with gradual decrease in current speed and increase in wave height. As more coastal constructions spring up around the Yellow River mouth in the future, we recommend that variation in hydrodynamics over time should be taken into consideration when designing such coastal constructions.  相似文献   
9.
The Peta Gulf Syncline (Upper Benue Trough, northeast Nigeria) is a fault-bounded pull-apart sub-basin. The boundary faults are mainly northeast-southwest-trending en echelon strike-slip faults, truncated along their lengths by normal and tear faults with stepovers. The eastern marginal faults underwent rotation during sedimentation, whereas the steeply dipping western marginal faults were inactive.The Peta Gulf Sub-basin is filled by the Bima Sandstone Formation (Lower Cretaceous) which has three siliciclastic members: (i) B1: medial fan coarse-grained to microconglomeratic sandstones; (ii) B2: full fluvial medium-grained sandstones with minimal fines; and (iii) B3: lacustrine and flood basin deposits comprising alternating fine-grained sandstones and siltstones/claystones. Sediment supply was from east to west and facies changes show a general fining in this direction. B3 offers the most favourable environment/lithology for U concentration.The only significant U occurrence in the Peta Gulf Syncline is the Zona U anomaly, which occurs within transitional B2-B3 brecciated sandstones with wall rock alterations zones. The mineralised zone has elevated SiO2, Fe, As, Ba and W levels but is depleted in the alkalis, Zr, Rb and Sr. This chemical zonation supports the epigenetic orgin of this anomaly.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号