首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   5篇
天文学   4篇
  2007年   2篇
  2006年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas.  相似文献   
2.
The results of a survey of 63 Galactic star-forming regions in the 6K–5K and 5 K –4K methyl acetylene lines at 102.5 and 85.5 GHz are presented. Fourty-three sources were detected at 102.5 GHz, and twenty-five at 85.5 GHz. Emission was detected toward molecular clouds with kinetic temperatures of 20–60 K (so-called “warm clouds”). The CH3CCH abundances in these clouds are about several ×10?9. Five sources (NGC 2264, G30.8-0.1, G34.26+0.15, DR 21(OH), S140) were mapped using the maximum-entropy method. The sizes of the mapped clouds fall in the range 0.1–1.7 pc, and the clouds have virial masses of 90–6200 M and densities between 6×104 and 6×105 cm?3. The CH3CCH sources coincide spatially with the CO and CS sources. Chemical-evolution simulations show that the typical methyl acetylene abundances in the observed clouds correspond to ages of ≈6×104 years.  相似文献   
3.
Observations of 26 regions of low-mass star formation and 17 regions of massive star formation in the 5−1-40 E, 70-61 A +, 80-71 A +, and 2K-1K methanol lines at 44.1, 84.5, 95.2 GHz, and 96.7 GHz yielded detections of methanol emission in 11 low-mass and 12 high-mass regions. The strongest lines in the low-mass regions were found towards bipolar outflows driven by Class 0 protostars with luminosities higher than or of the order of 10 L . These lines usually consist of cores 1–2 km s−1 in width, which are emitted by quiescent gas, and broader wings, emitted by gas accelerated by high-velocity jets. The temperature of the accelerated gas derived from rotational diagrams and statistical equilibrium calculations is roughly 20–50 K. This means that a significant fraction of the accelerated gas cools to such temperatures. The widths of the lines detected in the massive star-forming regions are 2–3 km s−1 or higher. Weak, broad wings were found towards only two sources: L1287 and AFGL5142. For most sources, the statistical-equilibrium calculations yielded gas temperatures of about 20–30 K and densities of about 104–106 cm−3, which are typical for warm clouds. However, different transitions emit in regions with different physical conditions located within the main beam of the telescope. Most of the 96.7 GHz emission arises in warm gas with kinetic temperatures of about 30 K, while most of the 95.2 GHz emission may arise in hot regions around Young Stellar Objects and/or be related to the wings of bipolar outflows. Published in Russian in Astronomicheskiĭ Zhurnal, 2007, Vol. 84, No. 1, pp. 48–59. The article was translated by the author.  相似文献   
4.
Biver  N.  Bockelée-Morvan  D.  Colom  P.  Crovisier  J.  Germain  B.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Moreno  R.  Paubert  G.  Wink  J.  Despois  D.  Lis  D. C.  Mehringer  D.  Benford  D.  Gardner  M.  Phillips  T. G.  Gunnarsson  M.  Rickman  H.  Winnberg  A.  Bergman  P.  Johansson  L. E. B.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):5-11
C/1995 O1 (Hale-Bopp) has been observed on a regular basis since August 1995 at millimetre and submillimetre wavelengths using IRAM, JCMT, CSO and SEST radio telescopes. The production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH3CN,HNC) have been monitored as a function of heliocentric distance(rh from 7 AU pre-perihelion to 4 AU post-perihelion. As comet Hale-Bopp approached and receded from the Sun, these species displayed different behaviours. Far from the Sun, the most volatile species were found in general relatively more abundant in the coma. In comparison to other species, HNC, H2CO and CS showed a much steeper increase of the production rate with decreasing rh. Less than 1.5 AU from the Sun, the relative abundances were fairly stable and approached those found in other comets near 1 AU. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about10 K at 7 AU to 110 K around perihelion. The expansion velocity of the gaseous species, derived from the line shapes, also increased with a law close torh 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
Forty-eight objects were detected in the 5?1–40 E methanol line at 84.5 GHz during a survey of Class I maser sources. Narrow maser features were found in 14 of these. Broad quasi-thermal lines were detected toward other sources. One of the objects with narrow features at 84.5 GHz, the young bipolar outflow L1157, was also observed in the 80–71 A + line at 95.2 GHz; a narrow line was detected at this frequency. Analysis showed that the broad lines are usually inverted. The quasi-thermal profiles imply that there are no more than a few line opacities. These results confirm the plausibility of models in which compact Class I masers appear in extended sources as a result of a preferential velocity field.  相似文献   
6.
The bright comet Hale–Bopp provided the first opportunity to follow the outgassing rates of a number of molecular species over a large range of heliocentric distances. We present the results of our observing campaign at radio wavelengths which began in August 1995 and ended in January 2002. The observations were carried out with the telescopes of Nançay, IRAM, JCMT, CSO and, since September 1997, SEST. The lines of nine molecules (OH, CO, HCN, CH3OH, H2CO, H2S, CS, CH3CN and HNC) were monitored. CS, H2S, H2CO, CH3CN were detected up to rh= 3–4 AU from the Sun, while HCN and CH3OH were detected up to 6 AU. CO, which is the main driver of cometary activity at heliocentric distances larger than 3–4 AU, was last detected in August 2001, at rh= 14 AU. The gas production rates obtained from this programme contain important information on the nature of cometary ices, their thermal properties and sublimation mechanisms.Line shapes allow to measure gas expansion velocities, which, at large heliocentric distances, might be directly connected to the temperature of the nucleus surface. Inferred expansion velocity of the gas varied as rh -0.4 within 7 AU from the Sun, but remained close to 0.4 km s-1 further away. The CO spectra obtained at large rhare strongly blueshifted and indicative of an important day-to-night asymmetry in outgassing and expansion velocity. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about 10 K at 7 AU to 110 K around perihelion.  相似文献   
7.
A survey has been made of 27 Galactic star-forming regions in the (CH3CN) 6K–5K, 5K–4K, and 8K–7K lines of methyl cyanide (CH3CN) at 110, 92, and 147 GHz. Twenty-five sources were detected at 110 GHz, nineteen at 92 GHz, and three at 147 GHz. The strongest CH3CN emission arises in hot cores in regions of massive star formation. The abundance of CH3CN in these objects exceeds 10?9 as a consequence of grain mantle evaporation. Weaker CH3CN lines were found in a number of sources. These can arise in either warm (30–50 K), dense (>104 cm?3) clouds or in hot regions with cooler gas.  相似文献   
8.
Comet 29P/Schwassmann-Wachmann 1 has been studied during seven days in August 1998 with the SEST submillimeter telescope at ESO, La Silla, Chile. The CO (J=2−1) emission at 230 GHz was mapped by directing the telescope beam at the nucleus and six off-nucleus positions. The CO line profiles exhibit the blue- and redshifted components previously observed by various observers. The strength of the observed lines does not decrease with projected distance to the nucleus as expected if CO molecules were coming from the nucleus only. Instead, the line area is nearly constant throughout the map. This can be explained if CO molecules are being released from both the sunlit side of the nucleus and CO-bearing particles distributed in a shell-like cloud. The extended source must consist of icy grains globally moving toward the Sun at ∼50 m s−1 released ∼30 days before the observations were made. The nuclear and extended sources produce (7±1)×1027 and 2.4×1028 molecules s−1, respectively. Our 1996 observations of the comet (Festou, M., M. Gunnarsson, A. Winnberg, H. Rickman, and G. Tancredi 2001. Icarus150, 140-150) were reexamined using this new two-source model. In this case, the nuclear and extended CO sources produced 10±1×1027 and 2.9×1028 CO molecules s−1, respectively. It is not necessary to postulate night side outgassing, but a large quantity of solid grains has to be expelled into the coma.  相似文献   
9.
Six young bipolar outflows in regions of low-intermediate-mass star formation were observed in the 70-61 A +, 80-71 A +, and 5−1-40 E methanol lines at 44, 95, and 84 GHz, respectively. Narrow features were detected towards NGC 1333-IRS4A, HH 25MMS, and L1157-B1. The flux densities of the detected lines are not higher than 11 Jy, which is much lower than the flux densities of strong maser lines in regions of high-mass star formation. Analysis shows that the narrow features are most likely masers. Published in Russian in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 4, pp. 327–336. This text was submitted by the authors in English.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号