首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
地球物理   3篇
地质学   1篇
天文学   16篇
  2011年   1篇
  2004年   1篇
  1999年   1篇
  1998年   3篇
  1997年   7篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有20条查询结果,搜索用时 46 毫秒
1.
We report observations by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft of three coronal green-line transients that could be clearly associated with coronal mass ejections (CMEs) detected in Thomson-scattered white light. Two of these events, with speeds >25 km s-1, may be classified as ‘whip-like’ transients. They are associated with the core of the white-light CMEs, identified with erupting prominence material, rather than with the leading edge of the CMEs. The third green-line transient has a markedly different appearance and is more gradual than the other two, with a projected outward speed <10 km s-1. This event corresponds to the leading edge of a ‘streamer blowout’ type of CME. A dark void is left behind in the emission-line corona following each of the fast eruptions. Both fast emission-line transients start off as a loop structure rising up from close to the solar surface. We suggest that the driving mechanism for these events may be the emergence of new bipolar magnetic regions on the surface of the Sun, which destabilize the ambient corona and cause an eruption. The possible relationship of these events to recent X-ray observations of CMEs is briefly discussed. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004981125702  相似文献   
2.
The development of a coronal mass ejection on 9 July 1996 has been analyzed by comparing the observations of the LASCO/SOHO coronagraphs with those of the Nancay radioheliograph. The spatial and temporal evolution of the associated radioburst is complex and involves a long-duration continuum. The analysis of the time sequence of the radio continuum reveals the existence of distinct phases associated with distinct reconnection processes and magnetic restructuring of the corona. Electrons are accelerated in association with these reconnection processes. An excellent spatial association is found between the position and extension of the radio source and the CME seen by LASCO. Furthermore, it is shown that the topology and evolution of the source of the radio continuum involve successive interactions between two systems of loops. These successive interactions lead to magnetic reconnection, then to a large scale coronal restructuring. Thus electrons of coronal origin may have access to the interplanetary medium in a large range of heliographic latitudes as revealed by the Ulysses observations.  相似文献   
3.
The Large Angle Spectroscopic Coronagraph (LASCO)   总被引:12,自引:0,他引:12  
The Large Angle Spectroscopic Coronagraph (LASCO) is a three coronagraph package which has been jointly developed for the Solar and Heliospheric Observatory (SOHO) mission by the Naval Research Laboratory (USA), the Laboratoire d'Astronomie Spatiale (France), the Max-Planck-Institut für Aeronomie (Germany), and the University of Birmingham (UK). LASCO comprises three coronagraphs, C1, C2, and C3, that together image the solar corona from 1.1 to 30 R (C1: 1.1 – 3 R, C2: 1.5 – 6 R, and C3: 3.7 – 30 R). The C1 coronagraph is a newly developed mirror version of the classic internally-occulted Lyot coronagraph, while the C2 and C3 coronagraphs are externally occulted instruments. High-resolution imaging spectroscopy of the corona from 1.1 to 3 R can be performed with the Fabry-Perot interferometer in C1. High-volume memories and a high-speed microprocessor enable extensive on-board image processing. Image compression by a factor of about 10 will result in the transmission of 10 full images per hour.  相似文献   
4.
Plasma and magnetic field data from the Helios 1/2 spacecraft have been used to investigate the structure of magnetic clouds (MCs) in the inner heliosphere. 46 MCs were identified in the Helios data for the period 1974–1981 between 0.3 and 1 AU. 85% of the MCs were associated with fast-forward interplanetary shock waves, supporting the close association between MCs and SMEs (solar mass ejections). Seven MCs were identified as direct consequences of Helios-directed SMEs, and the passage of MCs agreed with that of interplanetary plasma clouds (IPCs) identified as white-light brightness enhancements in the Helios photometer data. The total (plasma and magnetic field) pressure in MCs was higher and the plasma- lower than in the surrounding solar wind. Minimum variance analysis (MVA) showed that MCs can best be described as large-scale quasi-cylindrical magnetic flux tubes. The axes of the flux tubes usually had a small inclination to the ecliptic plane, with their azimuthal direction close to the east-west direction. The large-scale flux tube model for MCs was validated by the analysis of multi-spacecraft observations. MCs were observed over a range of up to 60° in solar longitude in the ecliptic having the same magnetic configuration. The Helios observations further showed that over-expansion is a common feature of MCs. From a combined study of Helios, Voyager and IMP data we found that the radial diameter of MCs increases between 0.3 and 4.2 AU proportional to the distance, R, from the Sun as R0.8 (R in AU). The density decrease inside MCs was found to be proportional to R–2.4, thus being stronger compared to the average solar wind. Four different magnetic configurations, as expected from the flux-tube concept, for MCs have been observed in situ by the Helios probes. MCs with left-and right-handed magnetic helicity occurred with about equal frequencies during 1974–1981, but surprisingly, the majority (74%) of the MCs had a south to north (SN) rotation of the magnetic field vector relative to the ecliptic. In contrast, an investigation of solar wind data obtained near Earths orbit during 1984–1991 showed a preference for NS-clouds. A direct correlation was found between MCs and large quiescent filament disappearances (disparition brusques, DBs). The magnetic configurations of the filaments, as inferred from the orientation of the prominence axis, the polarity of the overlying field lines and the hemispheric helicity pattern observed for filaments, agreed well with the in situ observed magnetic structure of the associated MCs. The results support the model of MCs as large-scale expanding quasi-cylindrical magnetic flux tubes in the solar wind, most likely caused by SMEs associated with eruptions of large quiescent filaments. We suggest that the hemispheric dependence of the magnetic helicity structure observed for solar filaments can explain the preferred orientation of MCs in interplanetary space as well as their solar cycle behavior. However, the white-light features of SMEs and the measured volumes of their interplanetary counterparts suggest that MCs may not simply be just H-prominences, but that SMEs likely convect large-scale coronal loops overlying the prominence axis out of the solar atmosphere.  相似文献   
5.
Pitch angle scattering of energetic particles (100 MeV) in the interplanetary medium are studied using Helios 1 and 2 magnetometer and plasma data during 1976 near the minimum of solar activity. An IMF configuration was used in the computer experiments which allowed the pitch angle diffusion coefficient, D and hence the parallel mean free path, to be determined. The radial mean free path was found to vary as r r -0.9 between 0.4 and 1 AU, but between 0.3 and 0.4 AU it decreases significantly. To reconcile our value of r at 1 AU, lying between 0.01 and 0.02 AU, with the average prompt solar proton event profile, an increasing value of r at lower radial distances would be required.  相似文献   
6.
The densification curves for the hot-pressing of pure olivine powders were obtained as a function of grain size (5 μ–2000 μ), temperature (1000–1600°C), and compacting stress (166–298 bars). This range of variables was found to straddle two fields of hot-pressing behavior, one dominated by power-law creep, one by Coble creep. The time required to density a powder to 99% of the single crystal density could be represented by the shorter of the two times: t1 = 2.2 · 103σ−3.4exp(85,000/RT)t2 = 1.3 · 104σ−1.5(G)+3exp(85,000/RT) where the compacting stress or pressure, σ, is given in bars and the grain size, G, in centimeters. It was also possible to estimate the parameters appropriate to Coble creep in a solid polycrystalline aggregate from the hot-pressing data; and these were:
The strain rates computed from this formula are close to those predicted by Stocker and Ashby (1973) and those found by Twiss (1976).  相似文献   
7.
Dal Lago  A.  Vieira  L.E.A.  Echer  E.  Gonzalez  W.D.  de Gonzalez  A.L.C.  Guarnieri  F.L.  Schuch  N.J.  Schwenn  R. 《Solar physics》2004,222(2):323-328
We have compared characteristics of 38 halo coronal mass ejections observed on the Sun by the Large Angle and Spectrometric Coronagraph onboard SOHO with their corresponding counterparts observed near Earth by the magnetic field and plasma instruments onboard the ACE, WIND and SOHO satellites, in the period from January 1997 to April 2001. We only have selected events that have some associated interplanetary ejecta structure at 1 AU and we have compared the lateral expansion speeds of these halo CMEs and the corresponding ejecta speeds near Earth. We found that there is a high correlation between these two speeds. The results are very similar to the study done by Lindsay et al. (1999) using observations made by Solwind and SMM coronagraphs, and Helios-1 and PVO plasma and interplanetary field data from the period of 1979 to 1988. Also, we reviewed the relation between the CME-related shock transit speed to Earth and the ejecta speeds near Earth. This kind of relation is very important to estimate ejecta speeds of events for which no interplanetary observations are available.  相似文献   
8.
Methane and ammonia abundances in the coma of Halley are derived from Giotto IMS data using an Eulerian model of chemical and physical processes inside the contact surface to simulate Giotto HIS ion mass spectral data for mass-to-charge ratios (m/q) from 15 to 19. The ratio m/q = 19/18 as a function of distance from the nucleus is not reproduced by a model for a pure water coma. It is necessary to include the presence of NH3, and uniquely NH3, in coma gases in order to explain the data. A ratio of production rates Q(NH3)/Q(H2O) = 0.01-0.02 results in model values approximating the Giotto data. Methane is identified as the most probable source of the distinct peak at m/q = 15. The observations are fit best with Q(CH4)/Q(H2O) = 0.02. The chemical composition of the comet nucleus implied by these production rate ratios is unlike that of the outer planets. On the other hand, there are also significant differences from observations of gas phase interstellar material.  相似文献   
9.
We review and discuss a few interplanetary electron density scales which have been derived from the analysis of interplanetary solar radio bursts, and we compare them to a model derived from 1974–1980 Helios 1 and 2 in situ density observations made in the 0.3–1.0 AU range. The Helios densities were normalized to 1976 with the aid of IMP and ISEE data at 1 AU, and were then sorted into 0.1 AU bins and logarithmically averaged within each bin. The best fit to these 1976-normalized, bin averages is N(R AU) = 6.1R -2.10 cm-3. This model is in rather good agreement with the solar burst determination if the radiation is assumed to be on the second harmonic of the plasma frequency. This analysis also suggests that the radio emissions tend to be produced in regions denser than the average where the density gradient decreases faster with distance than the observed R -2.10.NAS/NRC Postdoctoral Research Associate on leave from Laboratory Associated with CNRS No. 264, Paris Observatory, France.  相似文献   
10.
A sizable total-pressure (magnetic pressure plus kinetic pressure) enhancement was found within the high-speed wind stream observed by Helios 2 in 1976 near 0.3 AU. The proton density and temperature and the magnetic magnitude simultaneously increased for about 6 h. This pressure rise was associated with a comparatively large southward now velocity component (with Vz – 100 km · s–1) and magnetic-field rotation. The pressure enhancement was associated with unusual features in the electron distribution function. It shows a wide angular distribution of electron counting rates in the low-energy (57.8 eV) channel, while previous to the enhancement it exhibits a wide angular distribution of electron count rate in the high-energy (112, 221 and 309 eV) channels, perhaps indicating the mirroring of electrons in the converging field lines of the background magnetic field. These fluid and kinetic phenomena may be explained as resulting from an interplanetary magnetic flux rope which is not fully convected by the flow but moves against the background wind towards the Sun.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号