首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
测绘学   1篇
大气科学   3篇
地球物理   1篇
地质学   8篇
天文学   10篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1980年   1篇
  1979年   1篇
  1974年   2篇
  1951年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Preliminary results are presented of observations of the pure rotational lines of H2 toward T Tauri and Herbig Ae stars using the Short Wavelength Spectrometer (SWS) on the Infrared Space Observatory (ISO). The sources are selected to be isolated low- and intermediate-mass young stellar objects, for which the presence of a circumstellar disk has been established by millimeter interferometry. The lowest H2 S(0) and S(1) lines are detected in 3 out of 5 objects. The measured intensities indicate ∼ 0.01 M⊙ of warm (T ≈ 150 K) gas in the ISO beam. It is argued that for at least one case (HD 163296), the emission is probably dominated by the warm gas in the circumstellar disk rather than by shocked- or photon-heated gas in the surrounding envelope. Such observations can provide important constraints on the radial and vertical temperature profiles in circumstellar disks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
Impacts of different terrain configurations on the general behaviour of idealised katabatic flows are investigated in a numerical model study. Various simplified terrain models are applied to unveil modifications of the dynamics of nocturnal cold drainage of air as a result of predefined topographical structures. The generated idealised terrain models encompass all major topographical elements of an area in the tropical eastern Andes of southern Ecuador and northern Peru, and the adjacent Amazon. The idealised simulations corroborate that (i) katabatic flows develop over topographical elements (slopes and valleys), that (ii) confluence of katabatic flows in a lowland basin with a concave terrainline occur, and (iii) a complex drainage flow system regime directed into such a basin can sustain the confluence despite varying slope angles and slope distances.  相似文献   
3.
The DEBRIS project is a search for infrared excess around Sun-like main sequence stars, and other types of stellar targets, using the Infrared Space Observatory. Some results, calibration issues, and changes to our original program are presented. Future platforms for advancing this project after the conclusion of the ISO mission are indicated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
4.
A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   
5.
Assigning accurate dates to hypersaline sediments opens important terrestrial records of local and regional paleoecologies and paleoclimatology. However, as of yet no conventional method of dating hypersaline systems has been widely adopted. Biomarker, mineralogical, and radiocarbon analyses of sediments and organic extracts from a shallow (13 cm) core from a hypersaline playa, Lake Tyrrell, southeastern Australia, produce a coherent age-depth curve beginning with modern microbial mats and extending to ~ 7500 cal yr BP. These analyses are furthermore used to identify and constrain the timing of the most recent change in hydrological regime at Lake Tyrrell, a shift from a clay deposit to the precipitation of evaporitic sands occurring at some time between ~ 4500 and 7000 yr. These analyses show the potential for widespread dating of hypersaline systems integrating the biomarker approach, reinforce the value of the radiocarbon content of biomarkers in understanding the flow of carbon in modern ecologies, and validate the temporal dimension of data provided by biomarkers when dating late Quaternary sediments.  相似文献   
6.
Carbonate, largely in the form of dolomite, is found throughout the host rocks and ores of the Nchanga mine of the Zambian Copperbelt. Dolomite samples from the hanging wall of the mineralization show low concentrations of rare-earth elements (REE) and roof-shaped, upward convex, shale-normalized REE patterns, with positive Eu*SN anomalies (1.54 and 1.39) and marginally negative Ce anomalies (Ce*SN 0.98,0.93). In contrast, dolomite samples associated with copper and cobalt mineralization show a significant rotation of the REE profile, with HREE enrichment, and La/LuSN ratios <1 (0.06–0.42). These samples also tend to show variable but predominantly negative Eu*SN and positive cerium anomalies and an upwardly concave MREE distribution (Gd-Er). Malachite samples from the Lower Orebody show roof-tile-normalized REE patterns with negative europium anomalies (Eu*SN 0.65–0.80) and negative cerium anomalies (Ce*SN 0.86–0.9). The carbonate 87Sr/86Sr signature correlates with the associated REE values. The uppermost dolomite samples show Neoproterozoic seawater-like 87Sr/86Sr ratios ranging from 0.7111 to 0.7116, whereas carbonate from Cu–Co mineralized samples show relatively low concentrations of strontium and more radiogenic 87Sr/86Sr, ranging between 0.7136–0.7469. The malachite samples show low concentrations of strontium, but give a highly radiogenic 87Sr/86Sr of 0.7735, the most radiogenic 87Sr/86Sr ratio. These new data suggest that the origin and timing of carbonate precipitation at Nchanga is reflected in the REE and Sr isotope chemistry. The upper dolomite samples show a modified, but essentially seawater-like signature, whereas the rotation of the REE profile, the MREE enrichment, the development of a negative Eu*SN anomaly and more radiogenic 87Sr/86Sr suggests the dolomite in the Cu–Co mineralized samples precipitated from basinal brines which had undergone significant fluid–rock interaction. Petrographic, REE, and 87Sr/86Sr data for malachite are consistent with the original sulfide Lower Orebody being subject to a later oxidizing event.  相似文献   
7.
Summary The response of the climatic system to changes in its radiative forcing has been the subject of much study. Climate models of various complexity have been used to demonstrate that a small increase in the solar constant, or doubling of the atmospheric CO2, would lead to a warmer surface. Very little scientific attention, however, has been given to the effect such a change in radiative balance might have on climatic variability. That is, would an earth warmed in this way be more temperate or more variable? To move one step closer to answering this question, we employed a simple one-dimensional surface energy balance climate model and forced it with random Gaussian white noise to simulate interannual variability. We integrated the model using 0, 2, and 4% increases in the solar constant. The results of these numerical experiments indicate that, under a warmer surface radiative balance, interannual variability of the surface temperature is reduced.  相似文献   
8.
Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between “deeper” deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and “shallower” deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard.  相似文献   
9.
10.
We examine the supernova remnant SNR 0540-697 in the Large Magellanic Cloud (LMC) using data from the Chandra Advanced CCD Imaging Spectrometer. The X-ray emission from this supernova remnant (SNR) had previously been hidden in the bright emission of the nearby X-ray binary LMC X-1; however, new observations with Chandra can finally reveal the SNR's structure and spectrum. We find the SNR to be a thick-shelled structure about 19 pc in diameter, with a brightened northeast region. Spectral results suggest a temperature of 0.31 keV and an X-ray luminosity (0.3-3.0 keV) of 8.4x1033 ergs s(-1). We estimate an age of 12,000-20,000 yr for this SNR, but note that this estimate does not take into account the possibility of cavity expansion or other environmental effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号