首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   4篇
测绘学   1篇
大气科学   3篇
地球物理   2篇
地质学   12篇
海洋学   6篇
天文学   12篇
综合类   1篇
自然地理   3篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2013年   2篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   
2.
Helical probe tests (HPT) are a quick and economical means for manual field testing of soils to depths of 1.5 m with readings taken at 0.15-m intervals in only 10 min. The equipment is lightweight (only 2 kg) and thus amenable to deploy on initial site reconnaissance explorations, shallow pavement projects, earth retention walls, and/or compaction of fills. Although suitable for use in a variety of geomaterials: sands, silts, clays, and mixed soils, the specific application to residual fine sandy silts and silty fine sands of the Appalachian Piedmont and Blue Ridge geologic provinces is shown here. Existing relationships for converting the measured HPT torque reading to equivalent cone penetration testing (CPT) tip resistances are reviewed, as well as other trends.  相似文献   
3.
4.
5.
204 howardites in the National Meteorite Collection at the Smithsonian were examined for the presence of fine‐grained eucrite clasts, with the goal of better understanding the formation of the uppermost crust of asteroid 4Vesta. Eight clasts were identified and characterized in terms of their textures and mineral chemistry, and their degree of thermal metamorphism was assessed. The paucity of fine‐grained eucrites, both within the unbrecciated eucrites and as clasts within the howardites, suggests that they originate from small‐scale units on the surface of Vesta, most likely derived from partial melting. Six of the eight clasts described were found to be unequilibrated, meaning that they preserve their original crystallization trends. The vast majority of eucrites are at least partially equilibrated, making these samples quite rare and important for deciphering the petrogenesis of the vestan crust. Biomodal grain populations suggest that eucrite melts often began crystallizing pyroxene and plagioclase during their ascent to the surface, where they were subject to more rapid cooling, crystallization, and later metasomatism. Pyroxene compositions from this study and prior work indicate that the products of both primitive and evolved melts were present at the vestan surface after its formation. Two howardite thin sections contained multiple eucrite composition clasts with different crystallization and thermal histories; this mm‐scale diversity reflects the complexity of the current day vestan surface that has been observed by Dawn.  相似文献   
6.
R.G. Mayne  J.M. Sunshine  S.J. Bus 《Icarus》2011,214(1):147-160
High quality VNIR spectra of 15 Vestoids, small asteroids that are believed to originate from Vesta, were collected and compared to laboratory spectra and compositional data for selected HED meteorites. A combination of spectral parameters such as band centers, and factors derived from Modified Gaussian Model fits (band centers, band strengths, calculation of the low to high-Ca pyroxene ratio) were used to establish if each Vestoid appeared most like eucrite or diogenite material, or a mixture of the two (howardite). This resulted in the identification of the first asteroid with a ferroan diogenite composition, 2511 Patterson. This asteroid can be used to constrain the size of diogenite magma chambers within the crust of Vesta. The Vestoids indicate that both large-scale homogeneous units (>5 km) and smaller-scale heterogeneity (<1 km) exist on the surface of Vesta, as both monomineralogic (eucrite or diogenite material alone) and mixed (both eucrite and diogenite) spectra are observed. The small-scale of the variation observed within the Vestoid population is predicted by the partial melting model, which has multiple intrusions penetrating into the crust of Vesta. It is much more difficult to reconcile the observations here with the magma ocean model, which would predict much more homogeneous layers on a large-scale both at the surface and with depth.  相似文献   
7.
8.
Hydrographic data collected in cyclonic eddies in the Mozambique Channel and Basin revealed notable differences in temperature and salinity at a depth of 100 m, the upper mixed layer, the nitracline depths, and vertical distribution of chlorophyll-a (Chl-a). Differences in temperature and salinity did not show any consistent patterns. In contrast, the differences in the upper mixed layer, nitracline depths and the vertical Chl-a profile appeared to be driven by combined effects of eddy dynamics (i.e. shoaling of isopleths) and the seasonal variation in light availability and mixing conditions in the upper layers. Cyclonic eddies studied during austral spring and summer in the Mozambique Channel exhibited shallower upper mixed layers and nitracline depths, and deeper euphotic zones. Distinct subsurface Chl-a maxima (SCM) were associated with the stratified conditions in the upper layers of these eddies. In contrast, a cyclonic eddy studied during mid-austral winter in the Mozambique Basin had a shallower euphotic zone, deeper upper mixed layer and uniform Chl-a profiles. Another eddy sampled in the Mozambique Basin toward the end of winter showed a less pronounced SCM and roughly equal euphotic zone and upper mixed layer depths, suggestive of a transition from a well-mixed upper layer during winter to stratified conditions in summer.  相似文献   
9.
Identifying and mapping olivine on asteroid 4 Vesta are important components to understanding differentiation on that body, which is one of the objectives of the Dawn mission. Harzburgitic diogenites are the main olivine‐bearing lithology in the howardite‐eucrite‐diogenite (HED) meteorites, a group of samples thought to originate from Vesta. Here, we examine all the Antarctic harzburgites and estimate that, on scales resolvable by Dawn, olivine abundances in putative harzburgite exposures on the surface of Vesta are likely at best in the 10–30% range, but probably lower due to impact mixing. We examine the visible/near‐infrared spectra of two harzburgitic diogenites representative of the 10–30% olivine range and demonstrate that they are spectrally indistinguishable from orthopyroxenitic diogenites, the dominant diogenitic lithology in the HED group. This suggests that the visible/near‐infrared spectrometer onboard Dawn (VIR) will be unable to resolve harzburgites from orthopyroxenites on the surface of Vesta, which may explain the current lack of identification of harzburgitic diogenite on Vesta.  相似文献   
10.
In three different areas in western Norway, large errors are obtained in the radiocarbon dates from lacustrine sediments close to marine/lacustrine sediment boundaries. Differences occur between radiocar-bon and pollenanalytic dates and between dates at isolation/ingression contacts for lakes of the same altitude above the present sea level. Younger radiocarbon dates are also obtained below older ones in undisturbed sediments. When divergent dates occur, the radiocarbon dates always seem to be the youngest. Large differences are also found between NaOH soluble and insoluble fractions of the same sediment samples. Insoluble fractions generally yield younger dates than the soluble. Differences are not found, however, for dates younger than about 8,000 B.P. The dating errors are connected to periods with more oligotrophic conditions with isoetides. Their roots penetrate older sediments. Due to contamination of the organic part of the sediment from partly decomposed roots, some radiocarbon dates will be too young. The isoetide vegetation and the dating errors disappear when the lakes become dystrophic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号