首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  国内免费   1篇
地球物理   2篇
地质学   3篇
天文学   16篇
  2016年   2篇
  2015年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1991年   1篇
  1988年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The Mees CCD (MCCD) instrument is an imaging spectroscopy device which uses the 25 cm coronagraph telescope and the 3.0 m Coudé spectrograph at Mees Solar Observatory (MSO) on Haleakala, Maui. The instrument works with resolving power up to R 200 000 with significant throughput from 3934 Å (Caii K) to 10 000 Å. A fast guiding active mirror stabilizes the image during observations. A rapidly writing magnetic tape storage system allows observations to be recorded at 256 kbytes s–1. Currently, the MCCD is used for imaging spectroscopy of solar flares at 6563 Å (H), and velocity measurements of umbral oscillations; future plans include emission line studies of active region coronae, and photospheric studies of solar oscillations.  相似文献   
2.
Spectro-polarimetric observations at 2231 nm were made of NOAA 10008 near the west solar limb on 29 June 2002 using the National Solar Observatory McMath–Pierce Telescope at Kitt Peak and the California State University Northridge – National Solar Observatory infrared camera. Scans of spectra in both Stokes I and Stokes V were collected; the intensity spectra were processed to remove strong telluric absorption lines, and the Stokes V umbral spectra were corrected for instrumental polarization. The sunspot temperature is computed using the continuum contrast and umbral temperatures down to about 3700 K are observed. A strong Tii line at 2231.0 nm is used to probe the magnetic and velocity fields in the spot umbra and penumbra. Measurements of the Tii equivalent width versus plasma temperature in the sunspot agree with model predictions. Zeeman splitting measurements of the Stokes I and Stokes V profiles show magnetic fields up to 3300 G in the umbra, and a dependence of the magnetic field on the plasma temperature similar to that which was seen using Fei 1565 nm observations of the same spot two days earlier. The umbral Doppler velocity measurements are averaged in 16 azimuthal bins, and no radial flows are revealed to a limit of ±200 m s–1. A Stokes V magnetogram shows a reversal of the line-of-sight magnetic component between the limb and disk center sides of the penumbra. Because the Tii line is weak in the penumbra, individual spectra are averaged in azimuthal bins over the entire penumbral radial extent. The averaged Stokes V spectra show a magnetic reversal as a function of sunspot azimuthal angle. The mean penumbral magnetic field as measured with the Stokes V Zeeman component splitting is 1400 G. Several weak spectral lines are observed in the sunspot and the variation of the equivalent width versus temperature for four lines is examined. If these lines are from molecules, it is possible that lines at 2230.67, 2230.77, and 2231.70 nm originate from OH, while the line at 2232.21 nm may originate from CN.  相似文献   
3.
Imaging spectroscopy of the Sun was carried out at the California State University Northridge San Fernando Observatory using an InGaAs near-IR video camera. Using the Sii 1082.71 nm and Hei 1083.03 nm lines the Evershed effect is measured simultaneously in the photosphere and the chromosphere for three sunspots; the speed of the Evershed flow is measured to be between 3 to 8 times greater in the Hei line than in the Sii line, and the direction is radially inward in the chromosphere and outward in the photosphere. Telluric absorption lines prevented a meaningful measurement of Oi 1128.7 nm limb emission, but an upper limit of 20×10–3 B is measured for chromospheric limb emission at Oi 1316.3 nm. Zeeman splitting in Fei 1564.9 nm was observed in six sunspot umbrae, and a linear relationship between magnetic field and umbral continuum intensity is confirmed.  相似文献   
4.
We discuss observations of the weak ?rst overtone (Δν = 2) CO absorption band near 2300 nm with the U.S. National Solar Observatory Array Camera (NAC), a modern mid‐infrared detector. This molecular band provides a thermal diagnostic that forms lower in the atmosphere than the stronger fundamental band near 4600 nm. The observed center‐to‐limb increase in CO line width qualitatively agrees with the proposed higher temperature shocks or faster plasma motions higher in the COmosphere. The spatial extent of chromospheric shock waves is currently at or below the diffraction limit of the available CO lines at existing telescopes. Five minute period oscillations in line strength and measured Doppler shifts are consistent with the p‐mode excitation of the photospheric gas. We also show recent efforts at direct imaging at 4600 nm. We stress that future large‐aperture solar telescopes must be teamed with improved, dynamic mid‐infrared instruments, like the NAC, to capitalize on the features that motivate such facilities (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
5.
Penn  M. J.  Allen  C. L. 《Solar physics》1997,174(1-2):359-366
Imaging spectroscopic data of the Sii 1082.7 nm (photospheric) and Hei 1083.0 nm (chromospheric) spectral lines were taken starting 22:05 UT on 23 July, 1996 with the NASA/NSO Spectromagnetograph at the NSO/Kitt Peak Vacuum Telescope. Observations were made near the north solar pole, with a field of view of 100 by 400 arc sec and with a temporal cadence of 53 s for 2 hr. Simple fitting to the line profiles measured the line position, depth, and spectral full-width at half-maximum. Power spectra of the velocity oscillations in each line were computed, and the oscillation power in the 2 to 6 mHz frequency band versus view angle was measured to search for horizontal oscillations. Horizontal waves are not detected to limiting amplitudes (1) of 22 m s-1 in the chromosphere and 9 m s-1 in the photosphere. These values are used to estimate limits for the energy flux into the corona. The amplitude of radial oscillations in the chromosphere is twice that of the photosphere. No statistically meaningful oscillation power is measured in the spectral parameters of the Hei line in the emission shell seen above the continuum limb. Finally, rapidly evolving red-shift events are observed in the Hei 1083 nm line on the disk; these events are some sort of coronal rain, and there are about 40 of these events on the solar disk at any moment.  相似文献   
6.
Simultaneous measurements of the magnetic fields in the photosphere and chromosphere were used to investigate if magnetic flux is submerging at sites between adjacent opposite polarity magnetic network elements in which the flux is observed to decrease or `cancel'. These data were compared with chromospheric and coronal intensity images to establish the timing of the emission structures associated with these magnetic structures as a function of height. We found that most of the cancelation sites show either that the bipole is observed longer in the photosphere than in the chromosphere and corona (44%) or that the timing difference of the disappearance of the bipole between these levels of the atmosphere is unresolved. The magnetic axis lengths of the structures associated with the cancelation sites are on average slightly smaller in the chromosphere than the photosphere. These observations suggest that magnetic flux is retracting below the surface for most, if not all, of the cancelation sites studied.  相似文献   
7.
We investigated the accumulation and influence of bioavailable P (BAP) in sediments of a stream located in an agricultural area of the Lake Mendota watershed in Wisconsin, USA. During hydrologic events, the stream carried high concentrations of suspended sediment (up to 250 mg/l) and BAP (up to 2.5 mg/l). Bed sediments were highly enriched in BAP, as inventories of BAP in the top 10 cm of sediment ranged from 143 to 14,500 μg P/cm2. Space variations in BAP inventories were related to site-specific hydrodynamics and geochemical factors, including iron (Fe; r 2 = 0.71) and aluminum (Al; r 2 = 0.54) concentrations. Most sites behaved as potential sinks for dissolved reactive phosphate during hydrologic events and potential sources during base-flow periods. Through the combination of site-specific factors and geochemical controls, Dorn Creek modifies the amount, timing, and composition of P delivered from the watershed to downstream sites and water bodies.  相似文献   
8.
左溪石英闪长岩赋存于浙江绍兴-江山断裂带中,其平均化学成分近似于出露在其北西侧的元古界双溪坞群;不同岩性的元素含量及比值具有线性演化关系,相似于不均一的二元混合物。对造岩元素及稀土元素含量的模拟计算表明:双溪坞群50%部分熔融的熔体相与残留相按不同混合比组成的混合相,相当于岩体中的不同岩性。因此,“部分熔融-不均一混合”的模型可以较好地解释岩体所具有的元素地球化学特征。  相似文献   
9.
Imaging spectroscopic data of the He i 1083 nm limb emission were taken on several dates in October and November 1995 with the NASA/NSO spectromagnetograph at the NSO/Kitt Peak vacuum telescope and on 9 December, 1993 with the Michigan infrared camera at the NSO/Sacramento Peak vacuum tower telescope. Emission line profiles were observed in quiet-Sun and coronal hole locations on the northern and southern solar poles and on the east solar limb. The height of the He i 1083 nm shell above the continuum limb at 1083 nm was measured to be 2.11 ± 0.12 Mm with the Kitt Peak data, and 1.74 ± 0.05 Mm with the Sacramento Peak data. The Kitt Peak data show (1) within the measurement error there is no significant difference in the height or thickness of the emission shell in coronal holes compared with the quiet Sun, (2) the 1083 nm emission intensity drops by 50% in coronal holes, (3) the line width decreases by about 2 km s-1 in coronal holes (suggesting less inclined spicules), (4) the line width of the He i 1083 nm line jumps significantly as the line of sight crosses the solar limb (consistent with a higher temperature upper shell), (5) a quiescent prominence shows a smaller spectral line width (consistent with a cooler temperature or less velocity broadening), and (6) the entire emission shell and the prominence show a He i spectral component ratio of about 8 (suggesting optically thin emission).Operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号