首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   2篇
地质学   3篇
天文学   11篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  1980年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Lovina, classified as an ungrouped ataxite, is controversial and its identity as a meteorite has been questioned. In this work, we use Pb isotopes on targeted troilite nodules in Lovina as a test of its antiquity and provenance. Although precise ages cannot be obtained, LA‐ICP‐MS offers a rapid, straightforward procedure to establish the source of lead, whether ancient (meteoritic) or modern (terrestrial). For nine pristine, unweathered nodules in Lovina, we find a lead isotopic composition of: 206Pb/208Pb = 0.492 ± 0.003 (2σ, MSWD 0.79; 95%) and 207Pb/206Pb = 0.852 ± 0.003 (2σ, MSWD 1.09; 95%) with no detectable uranium. All lead compositions of the troilite fall in the range expected for modern environmental and mantle lead and are distinctly different from the primordial Canyon Diablo Troilite (CDT) composition of ancient meteoritic troilite. Although the origin of Lovina remains unknown, we conclude that lead in the Lovina troilite is unsupported by U decay and originated from a terrestrial source.  相似文献   
2.
The approximately spherical shapes of chondrules has long been attributed to surface tension acting on ~1 mm melt droplets that formed and cooled in the microgravity field of the solar nebula. However, chondrule shapes commonly depart significantly from spherical. In this study, 109 chondrules in a sample of CR2 chondrite NWA 801 were imaged by X-ray computed tomography and best-fitted to ellipsoids. The analysis confirms that many chondrules are indeed not spherical, and also that the chondrules’ collective shape fabric records a definite 13% compaction in the host meteorite. Dehydration of phyllosilicates within chondrules may account for that strain. However, retro-deforming all chondrules shows that a large majority were already far from spherical prior to accretion. Possible models for these initial shapes include prior deformation of individual chondrules in earlier hosts, and, as suggested by previous authors, rotation of chondrules as they were solidifying, and/or “streaming” of molten chondrules by their differential velocities with their gaseous hosts after melting. More in situ 3-D work such as this study on a variety of unequilibrated chondrites, combined with detailed structural petrography, should help further constrain these models and refine our understanding of chondrite formation.  相似文献   
3.
Soputan is a high-alumina basalt stratovolcano located in the active North Sulawesi-Sangihe Islands magmatic arc. Although immediately adjacent to the still geothermally active Quaternary Tondono Caldera, Soputan’s magmas are geochemically distinct from those of the caldera and from other magmas in the arc. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions with high-altitude ash plumes and pyroclastic flows—eight explosive eruptions during the period 2003–2011. Our field observations, remote sensing, gas emission, seismic, and petrologic analyses indicate that Soputan is an open-vent-type volcano that taps basalt magma derived from the arc-mantle wedge, accumulated and fractionated in a deep-crustal reservoir and transported slowly or staged at shallow levels prior to eruption. A combination of high phenocryst content, extensive microlite crystallization and separation of a gas phase at shallow levels results in a highly viscous basalt magma and explosive eruptive style. The open-vent structure and frequent eruptions indicate that Soputan will likely erupt again in the next decade, perhaps repeatedly. Explosive eruptions in the Volcano Explosivity Index (VEI) 2–3 range and lava dome growth are most probable, with a small chance of larger VEI 4 eruptions. A rapid ramp up in seismicity preceding the recent eruptions suggests that future eruptions may have no more than a few days of seismic warning. Risk to population in the region is currently greatest for villages located on the southern and western flanks of the volcano where flow deposits are directed by topography. In addition, Soputan’s explosive eruptions produce high-altitude ash clouds that pose a risk to air traffic in the region.  相似文献   
4.
Temperature acclimation influenced the desiccation tolerance of the marine snail Ilyanassa obsoleta (Nassarius obsoletus). I. obsoleta acclimated to 35‰ seawater at 18°C could survive for 116 hours, and tolerate a 57% loss of body water when desiccated at 15 °C in air with a relative humidity of 35%. In contrast, I. obsoleta acclimated to 3°C seawater survived for only 76 hours, and could not tolerate more than a 37% loss of body water. These results were used to support the proposition that freezing and desiccation tolerance are closely related in I. obsoleta.  相似文献   
5.
This study tested the feasibility of using 3-D laser imaging to measure the bulk density of iron meteorites. 3-D laser imaging is a technique in which a 3-D model of an object is built after aligning and merging individual detailed images of its surface. Assuming that the mass of the object is known, the volume of the model is calculated by software and an estimate of bulk density can be obtained by dividing mass by volume. The 3-D laser imaging technique was used to determine the density of 46 fragments from 11 different iron meteorites. The technique proved to be robust and was applied successfully to study samples ranging close to four orders of magnitude in mass (8 g to 156 kg) and exhibiting a variety of surface textures (e.g., cracks, regmaglypts), reflectivities (e.g., polished surfaces, fusion crust, rust), and morphologies (e.g., sharp angular edges, shrapnel tendrils). Three metrics were considered to estimate the error associated with density measurements: the range accuracy of the laser camera, image alignment error, and inter-operator variability during model building. Inter-operator variability was the largest source of error and was highest when assembling models of samples which either lacked distinctive features or were very complex in shape. Excluding two anomalous Zagora samples where silicate inclusions might have lowered density, the densities measured using 3-D laser imaging ranged from 6.98 to 7.93 g cm−3, consistent with previous studies. There is overlap between bulk density and iron meteorite class, and therefore bulk density cannot be used in isolation as a classification criterion. It is a good indicator, however, of weathering effects and of the potential presence of low-density inclusions.  相似文献   
6.
All Martian meteorites have experienced shock metamorphism to some degree. We quantitatively determined shock‐related strain in olivine crystals to measure shock level and peak shock pressure experienced by five Martian meteorites. Two independent methods employing nondestructive in situ micro X‐ray diffraction (μXRD) are applied, i.e., (1) the lattice strain method, in which the lattice strain value (ε) for each olivine grain is derived from a Williamson–Hall plot using its diffraction pattern (peak width variation with diffraction angle) with reference to a best fit calibration curve of ε values obtained from experimentally shocked olivine grains; (2) the strain‐related mosaicity method, allowing shock stage to be estimated by measuring the streaking along the Debye rings of olivine grain diffraction spots to define their strain‐related mosaic spread, which can then be compared with olivine mosaicity in ordinary chondrites of known shock stage. In this study, both the calculated peak shock pressures and the estimated shock stages for Dar al Gani 476 (45.6 ± 0.6 GPa), Sayh al Uhaymir 005/8 (46.1 ± 2.2 GPa), and Nakhla (18.0 ± 0.6 GPa) compare well with literature values. Formal shock assessments for North West Africa 1068/1110 (53.9 ± 2.1 GPa) and North West Africa 6234 (44.6 ± 3.1 GPa) have not been reported within the literature; however, their calculated peak shock pressures fall within the range of peak shock pressures defining their estimated shock stages. The availability of nondestructive and quantitative μXRD methods to determine shock stage and peak shock pressure from olivine crystals provides a key tool for shock metamorphism analysis.  相似文献   
7.
Abstract— The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000, delivered ?10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper, we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments from a strewnfield at least 16 km long and 3 to 4 km wide. Nearly 1 kg of “pristine” meteorites were collected one week after the fall before new snow covered the strewnfield; the majority of the recovered mass was collected during the spring melt. Ground eyewitnesses and a variety of instrument‐recorded observations of the Tagish Lake fireball provide a refined estimate of the fireball trajectory. From its calculated orbit and its similarity to the remotely sensed properties of the D‐ and P‐class asteroids, the Tagish Lake carbonaceous chondrite apparently represents these outer belt asteroids. The cosmogenic nuclide results and modeled production indicate a prefall radius of 2.1–2.4 m (corresponding to 60–90 tons) consistent with the observed fireball energy release. The bulk oxygen‐isotope compositions plot just below the terrestrial fractionation line (TFL), following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.64 ± 0.02 g/cm3) is the same, within uncertainty, as the total bulk densities of several C‐class and especially D‐ and P‐class asteroids. The high microporosity of Tagish Lake samples (?40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids.  相似文献   
8.
The 92.5 Ma Fort Knox granodiorite stock, near the western end of the Fairbanks Belt in the Yukon–Tanana terrane (YTT) of central Alaska, hosts a world-class gold mine. The stock has been analysed paleomagnetically using thermal and alternating-field step demagnetization and isothermal remanence methods. This pluton retains a primary thermoremanent magnetization at 18 sites (232 specimens) that resides mainly in single-to pseudosingle-domain magnetite with a direction of D = 228.8°, I = 84.3° (N = 18, k = 130, α95 = 3.0°), giving a paleopole at 56.5°N, 197.1°E (dp = 5.9°, dm = 5.8°). The pluton's host rock, the Fairbanks schist, does not retain a stable coherent remanence. Relative to the North American craton, the stock's paleoinclination indicates that the Fairbanks Belt has undergone nonsignificant poleward (northwesterly) translation of 25 ± 750 km only. Analysed in concert with the few available paleoinclinations available for the YTT in Yukon, the paleoinclination suggests further that the YTT has undergone only  250 to 450 km of dextral displacement along the Tintina fault in the past  100 Ma and, therefore, is parautocthonous since the mid-Cretaceous. The stock's paleodeclination records 121 ± 35° of counterclockwise rotation relative to the North American craton. Consideration of models published for Alaska's tectonic evolution suggests that this paleodeclination discordance is caused by rotations associated with the opening of the Canada Basin, with dextral displacement on the Tintina fault, and with development of the western Alaskan orocline. Thus the paleomagnetic results for the Fort Knox stock support a thin-skin tectonic model for the accretion of the YTT and Intermontane Belt terranes to the northern Cordillera.  相似文献   
9.
Ten splash‐form tektites from the Australasian strewn field, with masses ranging from 21.20 to 175.00 g and exhibiting a variety of shapes (teardrop, ellipsoid, dumbbell, disk), have been imaged using a high‐resolution laser digitizer. Despite challenges due to the samples’ rounded shapes and pitted surfaces, the images were combined to create 3‐D tektite models, which captured surface features with a high fidelity (≈30 voxel mm?2) and from which volume could be measured noninvasively. The laser‐derived density for the tektites averaged 2.41 ± 0.11 g cm?3. Corresponding densities obtained via the Archimedean bead method averaged 2.36 ± 0.05 g cm?3. In addition to their curational value, the 3‐D models can be used to calculate the tektites’ moments of inertia and rotation periods while in flight, as a probe of their formation environment. Typical tektite rotation periods are estimated to be on the order of 1 s. Numerical simulations of air flow around the models at Reynolds numbers ranging from 1 to 106 suggest that the relative velocity of the tektites with respect to the air must have been <10 m s?1 during viscous deformation. This low relative velocity is consistent with tektite material being carried along by expanding gases in the early time following the impact.  相似文献   
10.
After the 2005 Kashmir earthquake, we mapped surface ground fractures in Tangdhar, Uri, Rajouri and Punch sectors and liquefaction features in Jammu area lying close to the eastern side of the Line of Control (LOC) in Kashmir, India. The NW trending ground fractures occurred largely in the hanging wall zone of the southeastern extension of the causative fault in Tangdhar and Uri sectors. The principal compressive stress deduced from the earthquake induced ground fractures is oriented at N10°, whereas the causative Balakot–Bagh fault strikes 330°. The fault-plane solution indicates primarily SW thrusting of the causative fault with a component of strike–slip motion. The ground fractures reflect pronounced strike–slip together with some tensile component. The Tangdhar area showing left-lateral strike–slip motion lies on the hanging wall, and the Uri region showing right-lateral strike–slip movement is located towards the southeastern extension of the causative fault zone. The shear fractures are related to static stress that was responsible for the failure of causative fault. The tensile fractures with offsets are attributed to combination of both static and dynamic stresses, and the fractures and openings without offsets owe their origin due to dynamic stress. In Punch–Rajouri and Jammu area, which lies on the footwall, the fractures and liquefactions were generated by dynamic stress. The occurrence of liquefaction features in the out board part of the Himalayan range front near Jammu is suggestive of stress transfer  230 km southeast of the epicenter. The Balakot–Bagh Fault (BBF), the Muzaffarabad anticline, the rupture zone of causative fault and the zone of aftershocks — all are aligned in a  25 km wide belt along the NW–SE trending regional Himalayan strike of Kashmir region and lying between the MBT and the Riasi Thrust (Murree Thrust), suggesting a seismogenic zone that may propagate towards the southeast to trigger an earthquake in the eastern part of the Kashmir region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号