首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
地质学   1篇
天文学   23篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
排序方式: 共有24条查询结果,搜索用时 187 毫秒
1.
2.
3.
4.
We present a numerical code for computing all stages of the formation and evolution of giant planets in the framework of the core instability mechanism. This code is a non-trivial adaption of the stellar binary evolution code and is based on a standard Henyey technique. To investigate the performance of this code we applied it to the computation of the formation and evolution of a Jupiter mass object from a half Earth core mass to ages in excess of the age of the Universe.
We also present a new smoothed linear interpolation algorithm devised especially for the purpose of circumventing some problems found when some physical data (e.g. opacities, equation of state, etc.) are introduced into an implicit algorithm like the one employed in this work.  相似文献   
5.
6.
We present a finite difference code intended for computing linear, adiabatic, non radial pulsations of spherical stars. This code is based on a slight modification of the general Newton-Raphson technique in order to handle the relaxation of the eigenvalue(square of the eigenfrequency) of the modes and their corresponding eigenfunctions. This code has been tested computing the pulsation spectra of polytropic spheres finding a good agreement with previous work. Then, we have coupled this code to our evolutionary code and applied it to the computation of the pulsation spectrum of a low mass, pure-helium white dwarf of 0.3 M for a wide range of effective temperatures. In making this calculation we have taken an evolutionary time step short enough such that eigenmodes corresponding to a given model are used as initial approximation to those of the next one. Specifically, we have computed periods, period spacing, eigenfunctions, weight functions, kinetic energies and variational periods for a wide range of modes. To our notice this is the first effort in studying the pulsation properties of helium white dwarfs. The solution we have found working with these realistic white dwarf models are in good accord with the predictions of the asymptotic theory of Tassoul (1980) for high order modes. This indicates that the code presented here is able to work adequately also with realistic stellar models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
The purpose of this work is to explore the evolution of helium-core white dwarf stars in a self-consistent way with the predictions of detailed non-grey model atmospheres and element diffusion. To this end, we consider helium-core white dwarf models with stellar masses of 0.406, 0.360, 0.327, 0.292, 0.242, 0.196 and 0.169 M and follow their evolution from the end of mass-loss episodes, during their pre-white dwarf evolution, down to very low surface luminosities.
We find that when the effective temperature decreases below 4000 K, the emergent spectrum of these stars becomes bluer within time-scales of astrophysical interest. In particular, we analyse the evolution of our models in the colour–colour and in the colour–magnitude diagrams and find that helium-core white dwarfs with masses ranging from ∼0.18 to 0.3 M can reach the turn-off in their colours and become blue again within cooling times much less than 15 Gyr and then remain brighter than M V ≈16.5 . In view of these results, many low-mass helium white dwarfs could have had enough time to evolve to the domain of collision-induced absorption from molecular hydrogen, showing blue colours.  相似文献   
8.
We present a numerical study for the evolution of non-DA white dwarfs of 0.4, 0.55, 0.8, 1.0, and 1.2M . We pay special attention to the behaviour of the crystallization front. It is shown that crystallization begins at higher luminosities the higher the white dwarf mass is. The shape of the crystal growth function is very similar, almost independent of the value of the total stellar mass. We also study the crystallization process analytically, finding that it is nicely reproduced by a very simple model that accounts for the numerical results.Member of the Carrera del Investigador Científico, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (Argentina).Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina).  相似文献   
9.
Giant planet formation process is still not completely understood. The current most accepted paradigm, the core instability model, explains several observed properties of the Solar System’s giant planets but, to date, has faced difficulties to account for a formation time shorter than the observational estimates of protoplanetary disks’ lifetimes, especially for the cases of Uranus and Neptune. In the context of this model, and considering a recently proposed primordial Solar System orbital structure, we performed numerical calculations of giant planet formation. Our results show that if accreted planetesimals follow a size distribution in which most of the mass lies in 30-100 m sized bodies, Jupiter, Saturn, Uranus and Neptune may have formed according to the nucleated instability scenario. The formation of each planet occurs within the time constraints and they end up with core masses in good agreement with present estimations.  相似文献   
10.
This paper is aimed at exploring the effects of diffusion on the structure and evolution of low-mass helium white dwarfs. To this end, we solve the multicomponent flow equations describing gravitational settling and chemical and thermal diffusion. The diffusion calculations are coupled to an evolutionary code in order to follow the cooling of low-mass, helium core white dwarf models having envelopes made up of a mixture of hydrogen and helium, as recently suggested by detailed evolutionary calculations for white dwarf progenitors in binary systems. We find that diffusion causes hydrogen to float and the other elements to sink over time-scales shorter than evolutionary time-scales. This produces a noticeable change in the structure of the outer layers, making the star inflate. Thus, in order to compute accurately the mass–radius relation for low-mass helium white dwarfs we need to account for the diffusion processes during (at least) the white dwarf stages of the evolution of these objects. This should be particularly important when studying the general characteristics of binary systems containing a helium white dwarf and a pulsar.
In addition, we present an analytic, approximate model for the outer layers of the white dwarf aimed at interpreting the physical reasons for the change in the surface gravity for low-mass white dwarfs induced by diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号