首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   1篇
天文学   3篇
  2011年   1篇
  2005年   1篇
  2003年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
We present high angular resolution spectra taken along the jets from L1551 IRS 5 and DG Tau obtained with the Subaru Telescope. The position-velocity diagrams of the [Fe II] λ 1.644 μmemission line revealed remarkably similar characteristics for the two sources, showing two distinct velocity components separated from each other in both velocity and space with the entire emission range blueshifted with respect to the stellar velocity. The high velocity component (HVC) has a velocity of –200 ––300 km s-1 with a narrow line width, while the low velocity component (LVC) is around –100 km s-1 exhibitinig a broad line width. The HVC is located farther away from the origin and is more extended than the LVC. Our results suggest that the HVC is a well-collimated jet originating from the region close to the star, while the LVC is a widely-opened wind accelerated in the region near the inner edge of the accretion disk.  相似文献   
2.
We have measured near-infrared colorsof the binary Kuiper Belt object (KBO)1998 WW31 using the Subaru Telescope withadaptive optics. The satellite was detectednear its perigee and apogee(0.18“ and 1.2” apart from the primary).The primary and the satellite have similar H–Kcolors, while the satellite is redder thanthe primary in J–H. Combined with the Rband magnitude previously published byVeillet et al., 2002, the color of the primaryis consistent with that of optically red KBOs. Thesatellite's R-, J-, H-colors suggest thepresence of ~1 μm absorption band dueto rock-forming minerals. If the surface of thesatellite is mainly composed by olivine, thesatellite's albedo is higher value than the canonicallyassumed value of 4%.  相似文献   
3.
The Aoso volcano is a member of the newly defined volcanic front of Northeast Japan, characterized by the occurrence of low-K and hornblende andesites. Its activity can be divided into three stages: the early, caldera-forming, and late stages. While petrographic and geochemical data show all products underwent magma mixing or co-mingling, Sr and Nd isotopic ratios indicate that all are consanguineous. The end-member magmas are basaltic and andesitic in the early stage, but basaltic and dacitic in the late stage. In the caldera-forming stage, hornblende-free and hornblende-rich andesites co-mingled, which triggered an explosive eruption leading to caldera formation. Hornblende occurs also in the dacite from the early part of the late stage. These hornblende andesites and dacites are lower in magmatic temperature compared to hornblende-free andesites. The estimated basaltic end-member is low-K and high in magmatic temperature, and can be derived by a high degree of partial melting of mantle under the volcanic front. The estimated andesitic and dacitic end-members cannot be derived from the basaltic end-member magma through fractional crystallization, but can be derived from partial re-melting of the solidified low-K basalt, leaving amphibolitic and gabbroic residues, respectively.  相似文献   
4.
The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was an impact exploration searching for a volatile deposit in a permanently shadowed region (PSR) by excavating near-surface material. We conducted infrared spectral and imaging observations of the LCROSS impacts from 15 min before the first collision through 2 min after the second collision using the Subaru Telescope in order to measure ejecta dust and water. Such a ground-based observation is important because the viewing geometry and wavelength coverage are very different from the LCROSS spacecraft. We used the Echelle spectrograph with spectral resolution λλ ∼ 10,000 to observe the non-resonant H2O rotational emission lines near 2.9 μm and the slit viewer with a K′ filter for imaging observation of ejecta plumes. Pre-impact calculations using a homogeneous projectile predicted that 2000 kg of ejecta and 10 kg of H2O were excavated and thrown into the analyzed area immediately above the slit within the field of view (FOV) of the K′ imager and the FOV of spectrometer slit, respectively. However, no unambiguous emission line of H2O or dust was detected. The estimated upper limits of the amount of dust and H2O from the main Centaur impact were 800 kg and 40 kg for the 3σ of noise in the analyzed area within the imager FOV and in the slit FOV, respectively. If we take 1σ as detection limit, the upper limits are 300 kg and 14 kg, respectively. Although the upper limit for water mass is comparable to a prediction by a standard theoretical prediction, that for dust mass is significantly smaller than that predicted by a standard impact theory. This discrepancy in ejecta dust mass between a theoretical prediction and our observation result suggests that the cratering process induced by the LCROSS impacts may have been substantially different from the standard cratering theory, possibly because of its hollow projectile structure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号