首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地质学   1篇
天文学   10篇
  2018年   1篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2002年   3篇
  2000年   1篇
  1997年   3篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
We calculate the direction of the rotational angular momentum vector,M, of comet 19P/Borrelly based on rotational lightcurve data from 2000, groundbased imaging of the coma during the Deep Space 1encounter, and the basic near-nucleus coma morphology as revealed by the Deep Space 1 spacecraft. For the most likely direction, we derivea family of solutions (with center at RA = 221°, Dec = -7°) if the direction of M is towards the sunward hemisphere during the Deep Space 1 encounter, whereas if the rotation is of opposite sense, the diametrically opposite family of solutions (with center at RA = 41°, Dec = 7°) would result. We argue that the coma morphology in September 2001 is consistent with the nucleus being a principal axis rotator or one observationally indistinguishable from it. Therefore, for all practical purposes, the direction of the rotational angular momentum vector coincides with the spin axis. We also discuss why the determination of the spin axis direction based on observations from the last apparition is in disagreement with the current result.  相似文献   
2.
Near-simultaneous R- and J-band photometric measurements of the short-period Comets 2P/Encke and the Deep Impact mission target 9P/Tempel 1 were obtained. The resulting R-J colors are +0.82±0.08 mag and +1.46±0.13 mag for Encke and Tempel 1, respectively. Tempel 1's color is redder than the solar R-J color index of +0.76. The Tempel 1 observations directly detected the nucleus while the Encke observations likely suffered from coma contamination.  相似文献   
3.
Ways to rationalize the different periods (e.g., 15.08 h, Luu and Jewitt, 1990, Icarus 86, 69-81; 11.01 h, Fernández et al., 2004, Icarus, in this issue; Lowry et al., 2003, Lunar Planet. Sci. XXXIV, Abstract 2056) seen in near aphelion R-band light curves of Comet 2P/Encke are explored. We show that the comet is usually active at aphelion and it's observed light curves contain signal from both the nucleus and an unresolved coma. The coma contribution to the observed brightness is generally found to dominate with the nucleus providing from 28 to 87% of the total brightness. The amplitude of the observed variations cannot be explained by the nucleus alone and are due to coma activity. We show that some seven periodicities exist in the observed light curves at various times and that this is likely the result of an active nucleus spinning in an excited spin state. The changing periodicities are probably due to changes in the relative strengths of the active areas. We work out possible excited states based on experience with model light curves and by using an analogy to light curve observations of Comet 1P/Halley for which the spin state has been separately determined from spacecraft observations. There is a possibility of a fully relaxed principal axis spin state (0.538 d−1; P=44.6 h) but, because it provides a poorer fit to the observed periodicities than the best fit excited state together with the absence of a peak near 1.08 d−1 (2fφ) in the frequency spectrum of the Fernández et al. (2000, Icarus 147, 145-160) thermal IR lightcurve, we consider it unlikely. Both SAM and LAM excited states are allowed by the underlying periodicities and additional information is needed to choose between these. Our choice of a low excitation SAM state, i.e., one in which the instantaneous spin axis nutates around the total angular momentum vector in a motion that is characterized by limited angular oscillations around the long axis, is based on Sekanina's (1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475) interpretation of the fan coma that this comet often displays. We argue that possible LAM states are excluded either because they are too difficult to excite or because they would be inconsistent with the formation of the observed fan morphology. Two possible SAM states emerge that provide good fits to the observed periodicities, one with a precessional frequency for the long axis about the total angular momentum vector of 1.614 d−1 (P?=14.9 h) and an oscillation frequency around the long axis of 0.539 d−1 (Pψ=44.5 h) and a second with a precessional frequency of 2.162 d−1 (P?=11.1 h) combined with an oscillation around the long axis of 0.502 d−1 (Pψ=47.8 h). While either solution is possible, the latter is, in a least squares sense, more likely to be the actual spin state. In both cases the direction of the total angular momentum vector (αM,δM[J2000]=198.6, −0.3 deg) is assumed to be defined by the evolving geometry and morphology of the coma (Sekanina, 1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475; Festou and Barale, 2000, Astron J. 119, 3119-3132). We discuss the possible locations of the primary active areas found by Sekanina (1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475) and, while they are at high cometographic latitudes, they do not have to be physically located close the region were the axis of maximum moment of inertia pierces the surface (i.e., at high cometocentric latitude). We offer a new interpretation of the 10.7 μm data by Fernández et al. (2000, Icarus 147, 145-160) which yields an axial ratio a/b=2.04. This, with the two SAM states that we have found, requires that b/c>1.18 or >1.09 implying a significant asymmetry in the shape of the elongated nucleus. For the observed fan morphology to be maintained, the true axial ratio b/c cannot be much larger than these limiting values otherwise the amplitude of the oscillation about the long axis becomes too large and the fan morphology would be destroyed. The precise phasing of the spin modes, i.e., the value of the Euler angles at a particular time, is not determinable from the current data set, but a set of well sampled thermal infrared observations of the nucleus covering many periods and a wide range of observing geometries could provide this information in the future as well as clearly distinguishing between the two excited spin states.  相似文献   
4.
Imaging of coma morphology of Comet Hale-Bopp from pre-perihelion through perihelion to post-perihelion is presented. Broad band images from 1996 and late 1997 show nearly radial jets streaking out from the nucleus. During both 1996 and late 1997, the brightest jets are approximately in a northern/northeastern direction. The slight curvature present in these radial jets is consistent with radiation pressure effects. Narrow band images around perihelion show two distinctive pictures of the CN and the continuum coma morphology. Spirals are clearly seen in the CN images but not in the continuum where structure is confined to the sunward side. The CN structure is consistent with continuous outgassing of the source of CN from the nucleus during both day and night. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
The analysis of radar observations of the asteroid 4179 Toutatis by Hudson and Ostro (1995, Science270, 84-86) yielded a complex spin state. We revisit the visible lightcurve data on Toutatis (Spencer et al. 1995, Icarus117, 71-89) to explore the feasibility of using a rotational lightcurve to recover the signature of an excited spin state. For this, we apply Fourier transform and CLEAN algorithm (WindowCLEAN). WindowCLEAN yields clear and precise frequency signatures associated with the precession of the long axis about the total angular momentum vector and a combination of this precession and rotation about the long axis. For a long-axis mode state, our periodicities for Toutatis yield a mean long-axis precession period, Pφ, of 7.38 days and a rotation period around the long axis, Pψ, of 5.38 days, which compare well with the respective periods of 7.42 and 5.37 days derived by Ostro et al. (1999, Icarus137, 122-139) and represent an independent confirmation of these values. We explain why the dramatic change in the Earth-Toutatis-Sun geometry during the time that the lightcurve was obtained has little effect on the final results obtained. Using the Toutatis example as a guide, we discuss the capabilities as well as the limitations on deriving information about complex spin states from asteroidal lightcurves.  相似文献   
6.
The final Deep Space 1 (DS1) mission target, comet 19P/Borrelly, was observedfrom July 28–August 1, 2000 at the CTIO-1.5 m telescope in the R filter. Theobserved lightcurve has a large peak to peak variation between 0.84 mag and1.0 mag. A period of 26.0 ± 1 hr (assuming a double-peaked lightcurve)was found using all five nights. This is in good agreement with the period of25.02 ± 0.5 hr quoted by Lamy et al. (1998) using only 6 points ofHST data and is also consistent with HST data taken around the DS1 encountertime by Weaver et al. (2002).Using the mean magnitude R = 20.8 mag and assuming a 4% albedo, we derivean effective nuclear radius of 2.6 km. The large lightcurve amplitude translates toa long to intermediate axial ratio a/b ≥ 2.2, in excellent agreement with theHST result of a/b ≥ 2.4 (Lamy et al., 1998) and with DS1 images (Soderblom et al., 2002).  相似文献   
7.
The recent availability of bright comets has given us an excellent opportunity to study cometary chemistry. Comet Hale-Bopp (1995 O1)gave us the particularly rare opportunity to study a bright and active comet for almost two years. Our program concentrated on millimeter-wave observations of sulfur-bearing molecules in an effort to understand the total sulfur budget of the comet. Using the National Radio Astronomy Observatory 12-m telescope on Kitt Peak we monitored both the long and short-term variations in H2S, CS, and OCS, as well as observing H2CS and SO. This was the first observation of H2CS in any comet (Figure 1). Additionally, we mapped CS with the BIMA interferometer. Variations in the line profiles and changes in line intensity as large as a factor of two were seen in day to day observations of both H2S and CS. An example for H2S is shown in Figure 2. This is the first time we can attempt to study the entire group of sulfur-bearing molecules. Models of the sulfur coma have thus far largely been based on observations of the daughter products CS and atomic sulfur made over the last 18 years using the International Ultraviolet Explorer (IUE) satellite, coupled with radio observations of CS and H2S in several recent comets. Four new sulfur-bearing species have been observed in comets Hale-Bopp and Hyaku take, three of them parent species. The high resolution maps in CS will also allow spatial information to be included in the sulfur model for the first time. C/Hale-Bopp is the first comet in which so many sulfur species have been observed. Analysis of the abundances of these species in comparison to the total atomic sulfur observed should reveal whether or not we can now account for all of the primary sulfur sources in comets. Perhaps the most interesting question that these observations raised was why C/Hale-Bopp appeared to contain so much more SO and SO2 (as observed by others) than any other comet. This spurred the discovery that the UV fluorescence models of these species were incorrect (S. J. Kim, this issue). Analysis of the data and modeling of the sulfur budget are still underway. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
We have compared the kinematics and metallicity of the main-sequence binary and single uvby F stars from the Hipparcos catalog to see if the populations of these stars originate from the same statistical ensemble. The velocity dispersions of the known unresolved binary F stars have been found to be dramatically smaller than those of the single F stars. This suggests that the population of these binaries is, in fact, younger than that of the single stars, which is further supported by the difference in metal abundance: the binaries turn out to be, on average, more metal rich than the single stars. So, we conclude that the population of these binaries is indeed younger than that of the single F stars. Comparison of the single F stars with the C binaries (binary candidates identified in Suchkov & McMaster) has shown, on the other hand, that the latter stars are, on average, older than the single F stars. We suggest that the age difference between the single F stars, known unresolved binaries, and C binaries is associated with the fact that stellar evolution in a binary systems depends on the binary components' mass ratio and separation, with these parameters being statistically very different for the known binaries and C binaries (e.g., mostly substellar secondaries in C binaries vs. stellar secondaries in known binaries). In general we conclude that the populations of known binaries, C binaries, and single F stars do not belong to the same statistical ensemble. The implications of the discovered age difference between these populations along with the corresponding differences in kinematics and metallicity should be important not only for understanding the evolution of stars but also for the history of star formation and the evolution of the local Galactic disk.  相似文献   
9.
Repeated earthquakes (EQs) are clear indication of alarming seismicity which can be witnessed across Indian subcontinent. Increase in population density with inappropriate construction practice repeatedly rise alarm that in comparison to damage scenarios experienced during previous major to great EQs in India, future catastrophes would be manifold. Performing regional seismic hazard as well as site response studies can possibly help in accurate estimation of probable future seismic scenario. Site class (SC) of EQ recording stations is an important part of both seismic hazard as well as site response analyses. In seismic hazard analysis, suitable attenuation relations are often selected based on comparison of recorded ground motion with proposed ground motion as per selected attenuation relation for the same SC. Thus, unless SC of recorded ground motions is known, suitability of selected attenuation relation cannot be validated. In addition, recent studies suggest that for same soil column, ground motion may amplify at the surface from minimal to very high depending upon input motion characteristics. Thus again, unless SC of recording station is not known, recorded ground motion cannot be considered with confidence as outcrop or base motion for region specific site response studies. In the present work, SC of eight recording stations located in Tarai region of Uttarakhand, India located adjacent to the Himalayan belt and which are part of PESMOS database, are established by three different methods namely; equivalent linear ground response analysis, generalized inversion technique and horizontal to vertical spectral ratio method. Collectively all these three methods suggest same SC for each of the eight recording stations including Roorkee, Rishikesh, Dehradun etc. Further, obtained SC based on the present study is considerably different from available SC as per PESMOS database. However, present findings are matching with recent published work. Obtained results can be very helpful in developing surface seismic hazard using regional ground motion records towards minimizing future EQ induced damages.  相似文献   
10.
The rotation period derived by Mueller and Samarasinha (Mueller, B.E.A., Samarasinha, N.H. [2002]. Earth Moon Planets 90, 463-471) of the Deep Space 1 (DS1) mission target, Comet 19P/Borrelly, using ground-based data from July 28 to August 1, 2000, is improved by two orders of magnitude. This precision is reached in a multistep process.Combining all available ground-based data in 2000 decreases the error by an order of magnitude. Next, assuming that the rotation period did not change between 2000 and 2001, constraints from the HST 2001 data (Weaver, H.A., Stern, S.A., Parker, J.Wm. [2003]. Astron. J. 126, 444-451) yield three possible rotation periods: P = 1.088 ± 0.003 days, P = 1.108 ± 0.002 days, and P = 1.135 ± 0.003 days, which are consistent with our initial derivation of P = 1.08 ± 0.04 days (Mueller, B.E.A., Samarasinha, N.H. [2002]. Earth Moon Planets 90, 463-471).These three periods are further refined and the error bars further improved by another order of magnitude by linking the combined ground-based data from 2000 to the nuclear orientation of Borrelly at the DS1 encounter in 2001 (see Table 2). Due to aliasing, there are seven possible rotation periods around P = 1.088 days, five possible periods around P = 1.108 days, and six possible periods around P = 1.135 days, with precisions of the order of 0.0002 days (≈17 s).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号