首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   1篇
天文学   11篇
  2009年   2篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1985年   1篇
  1983年   2篇
排序方式: 共有12条查询结果,搜索用时 312 毫秒
1.
2.
We present observational data for two long-period and three dynamically new comets observed at heliocentric distances between 5.8 to 14.0 AU. All of the comets exhibited activity beyond the distance at which water ice sublimation can be significant. We have conducted experiments on gas-laden amorphous ice samples and show that considerable gas emission occurs when the ice is heated below the temperature of the amorphous-crystalline ice phase transition (T∼137 K). We propose that annealing of amorphous water ice is the driver of activity in comets as they first enter the inner Solar System. Experimental data show that large grains can be ejected at low velocity during annealing and that the rate of brightening of the comet should decrease as the heliocentric distance decreases. These results are consistent with both historical observations of distant comet activity and with the data presented here. If observations of the onset of activity in a dynamically new comet are ever made, the distance at which this occurs would be a sensitive indicator of the temperature at which the comet had formed or represents the maximum temperature that it has experienced. New surveys such as Pan STARRS, may be able to detect these comets while they are still inactive.  相似文献   
3.
The rate coefficients, including Arrhenius parameters, have been computed for a number of chemical reactions involving hydrocarbon species for which experimental data are not available and which are important in planetary atmospheric models. The techniques used to calculate the kinetic parameters include the Troe and semiempirical bond energy-bond order (BEBO) or bond strength-bond length (BSBL) methods.  相似文献   
4.
5.
The trapping and release of H2, CO, CO2, CH4, Ar, Ne, and N2 by amorphous water ice was studied experimentally under dynamic conditions, at low temperatures starting at 16°K, with gas pressure of 5 × 10?8?10?6 Torr. CO, CH4, Ar, and N2 were found to be released in three or four distinct temperature ranges, each resulting from a different trapping mechanism: (a) 30–55°K, where the gas frozen on the water ice evaporates; (b) 135–155°K, where gas is squeezed out of the water ice during the transformation of amorphous ice to cubic ice; (c) 165–190°K, where gas and water are released simultaneously, probably by the evaporation of a clathrate hydrate, and, occasionally (d) 160–175°K, where deeply buried gas is released during the transformation of cubic ice to hexagonal ice. If the third range is indeed due to clathrate formation, CO was found to form this compound. CO2 did not form a clathrate under the experimental conditions. Excess hydrogen did not affect the occlusion of other gases. Hydrogen itself was trapped only at 16°K. Neon was not trapped at 25°K. With cubic ice, the only trapping mechanism is freezing of gas on the ice surface. No fractionation between the gas phase and the ice was observed with a mixture of CO and Ar. Massive ejection of ice grains was observed during the evaporation of the gas in three (a,c,d) out of the four ranges. The experimental results are used to explain several cometary phenomena, especially those occurring at large heliocentric distances, and are applied also to Titan's atmospheric composition and to the possible ejection of ice grains from Enceladus.  相似文献   
6.
D. Laufer 《Icarus》2005,178(1):248-252
Following the tracing of jets emanating from Comet Wild-2 to depressions in the ice by Brownlee et al. [2004. The Stardust—A successful encounter with the remarkable Comet Wild 2. Lunar Planet. Sci. 35. Abstract 1981], we demonstrated experimentally the formation of depressions and chaotic terrain on comet analogs when gas is released from underlying ice pockets. We also demonstrated experimentally the ejection of ice grains into the experimental cometary “coma.”  相似文献   
7.
Deubner  F.-L.  Laufer  J. 《Solar physics》1983,82(1-2):151-155
Solar Physics - Short period oscillations (with periods less than 150 s) are shown to be non-uniformly distributed on the solar surface, and in time. Rather, they appear concentrated in short...  相似文献   
8.
A. Bar-Nun  I. Pat-El  D. Laufer 《Icarus》2007,187(1):321-325
The findings of Deep Impact on the structure and composition of Tempel-1 are compared with our experimental results on large (20 cm diameter and up to 10 cm high) samples of gas-laden amorphous ice. The mechanical ∼tensile strength inferred for Tempel-1: ∼65 Pa is 30 to 60 times smaller than our experimental findings of 2-4 kPa. This means that Tempel-1 is even fluffier than our very fluffy, talcum like, ice sample. The thermal inertia: is very close to our value of 80. The density of , is close to our value of 250-300 kg m−3, taking into account an ice/silicate ratio of 1 in the comet, while we study pure ice. Surface morphological features, such as non-circular depressions, chaotic terrain and smooth surfaces, were observed in our experiments. The only small increase in the gas/water vapor ratio pre- and post-impact, suggest that in the area excavated by the impactor, the 135 K front did not penetrate deeper than a few meters. Altogether, the agreement between the findings of Deep Impact and our experimental results point to a loose agglomerate of ice grains (with a silicate-organic core), which was formed by a very gentle aggregation of the ice grains, without compaction.  相似文献   
9.
The scientific community has expressed strong interest to re-fly Stardust-like missions with improved instrumentation. We propose a new mission concept, SARIM, that collects interstellar and interplanetary dust particles and returns them to Earth. SARIM is optimised for the collection and discrimination of interstellar dust grains. Improved active dust collectors on-board allow us to perform in-situ determination of individual dust impacts and their impact location. This will provide important constraints for subsequent laboratory analysis. The SARIM spacecraft will be placed at the L2 libration point of the Sun–Earth system, outside the Earth’s debris belts and inside the solar-wind charging environment. SARIM is three-axes stabilised and collects interstellar grains between July and October when the relative encounter speeds with interstellar dust grains are lowest (4 to 20 km/s). During a 3-year dust collection period several hundred interstellar and several thousand interplanetary grains will be collected by a total sensitive area of 1 m2. At the end of the collection phase seven collector modules are stored and sealed in a MIRKA-type sample return capsule. SARIM will return the capsule containing the stardust to Earth to allow for an extraction and investigation of interstellar samples by latest laboratory technologies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号