首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   5篇
  国内免费   1篇
大气科学   2篇
地球物理   22篇
地质学   33篇
海洋学   2篇
天文学   8篇
自然地理   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   6篇
  2009年   10篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1997年   2篇
  1992年   2篇
  1977年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
The CO2 atmospheric content has shown large variations over geological times. High contents (up to one order of magnitude more than present-day values) ultimately correspond to discrete episodes of mantle degassing, either juvenile, or subduction-related (carbon recycling). A number of arguments (e.g. the continuous volume increase of carbonate-bearing sediments with time) suggest that, throughout the Earth's history, juvenile CO2 has formed a major contribution to the global carbon budget of the Earth.
The absence of a direct relationship between major volcanic episodes and the average CO2 atmospheric content suggests that volcanoes might not be the only way by which mantle CO2 is transported to the surface. It is proposed that large quantities of juvenile CO2 could temporarily be stored in the lower continental crust during major episodes of granulite formation. These are primarily caused by magmatic underplating and they result in a vertical accretion of the crust by accumulation of CO2-bearing, mantle-derived magmas. Most of the CO2 migrates through the crust during post-metamorphic evolution and isostatic restoration of the normal continental thickness. However, large quantities of CO2 can still be present in some areas, notably as high-density fluids enclosed in minerals.  相似文献   
2.
A promising technique for the removal of heavy metal ions from wastewater streams involved firstly the ions adsorption on a colloidal precipitate (carrier) and then the separation of the loaded flocs (coagula) by a modified column flotation. Here, the effluent feed and the carrier (ferric hydroxide) enter smoothly by the top of the column through a special diffuser, in counter current with rising bubbles (100–600 μm diameter) generated by using recycled water, surfactant and air suction through a venturi. High separation values of the column flotation of the carrier precipitates were achieved, despite the high superficial flow rate and the high Fe+ 3 concentration utilized (> 60 mg L− 1 Fe). No rupture of colloidal carrier aggregates was observed and a low split was ensured by monitoring the concentrate (floated product) flow rate. Results indicated that best separation was attained by controlling the medium pH (for best heavy metal ion adsorption onto the carrier), followed by sodium oleate, used as “collector” and optimizing operating parameters (conditioning, flow rates, etc.). The column throughput reached 43 m h− 1 (m3 m− 2 h− 1), which is about 4 times the normal capacity of DAF-dissolved air flotation unit, the most used floater in wastewater treatment. Various metals (Cu, Ni, Pb, etc.) and molybdate ions present in synthetic and real effluent were successfully removed based on this colloidal adsorbing flotation principle. The process was also applied in a pilot scale to treat an industrial electroplating wastewater. Most of toxic metals (Cu, Ni and Zn) were reduced from initial concentrations of about of 2 to 10 mg L− 1, to below 0.5 to 1.0 mg L− 1, meeting local municipal discharge limits (but Cd ions). It is believed that flotation separation using medium-sized bubbles has great potential as a clean water and wastewater treatment technology.  相似文献   
3.
Groundwater resources are typically the main fresh water source in arid and semi‐arid regions. Natural recharge of aquifers is mainly based on precipitation; however, only heavy precipitation events (HPEs) are expected to produce appreciable aquifer recharge in these environments. In this work, we used daily precipitation and monthly water level time series from different locations over a Mediterranean region of Southeastern Spain to identify the critical threshold value to define HPEs that lead to appreciable aquifer recharge in this region. Wavelet and trend analyses were used to study the changes in the temporal distribution of the chosen HPEs (≥20 mm day?1) over the observed period 1953–2012 and its projected evolution by using 18 downscaled climate projections over the projected period 2040–2099. The used precipitation time series were grouped in 10 clusters according to similarities between them assessed by using Pearson correlations. Results showed that the critical HPE threshold for the study area is 20 mm day?1. Wavelet analysis showed that observed significant seasonal and annual peaks in global wavelet spectrum in the first sub‐period (1953–1982) are no longer significant in the second sub‐period (1983–2012) in the major part of the ten clusters. This change is because of the reduction of the mean HPEs number, which showed a negative trend over the observed period in nine clusters and was significant in five of them. However, the mean size of HPEs showed a positive trend in six clusters. A similar tendency of change is expected over the projected period. The expected reduction of the mean HPEs number is two times higher under the high climate scenario (RCP8.5) than under the moderate scenario (RCP4.5). The mean size of these events is expected to increase under the two scenarios. The groundwater availability will be affected by the reduction of HPE number which will increase the length of no aquifer recharge periods (NARP) accentuating the groundwater drought in the region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
This study presents the results of a three‐dimensional variable‐density numerical modelling of the Motril‐Salobreña coastal aquifer and the possible effects of the entry into service in May 2005 of the Rules Dam, located just 17 km from the coast. Present parameters of the Motril‐Salobreña aquifer show that the system's conditions are very similar to a natural regime. The dam will substantially alter aquifer recharge, as the entry flow through the alluvial sediments of the Guadalfeo River will be entirely cut off or drastically reduced. Different scenarios reproducing the possible evolution of the aquifer under operation of the Rules Dam have been modelled. In most cases, results indicate that the conditions of the aquifer would worsen, with a general advance of the freshwater–saltwater interface. The area with most risk of saltwater intrusion is the old mouth of the Guadalfeo River, where the mixing zone could advance 1200 m inland. It is proposed that maintaining a 5–6 Mm3 year?1 ‘ecological flow’ in the Guadalfeo River could prevent this saline advance. This application demonstrates that variable‐density models are potentially useful tools for estimating the effects of dams on the hydrodynamic and hydrochemical conditions of a coastal aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
5.
In March 2012, during the rainy season in the Altiplano plateau, a >100-year return period rainfall event affected the deeply incised valleys of the Precordillera of the Tarapacá Region, northern Chile. This extreme event in a very arid region triggered a number of debris and mud flows that caused severe damage and destruction in several small villages along the Camiña and Tarapacá valleys. The highly vulnerable location of the villages on top of alluvial fans due to socioeconomic and cultural reasons is a key factor to explain the level of destruction in most villages. In this paper, this unusual, remarkable landslide event is described, and the hazard faced by these settlements for future rainfall episodes and possible mitigation measures are discussed.  相似文献   
6.
Multiple‐angle micro‐pulse lidar (MPL) observations were made at Las Galletas on Tenerife, Canary Islands during the Aerosol Characterization Experiment‐2 (ACE‐2) conducted June–July, 1997. A principal objective of the MPL observations was to characterize the temporal/spatial distributions of aerosols in the region, particularly to identify and profile elevated Saharan dust layers which occur intermittently during the June–July time period. Vertical and slant angle measurements taken 16 and 17 July characterize such an occurrence, providing aerosol backscatter, extinction, and optical depth profiles of the dust layer between 1 and 5 km above mean sea level (MSL). Additionally, horizontal measurements taken in Las Galletas throughout the 6‐week period provide a time profile of the varying aerosol extinction at the surface. This profile exhibits the alternating periods of clean maritime air and pollution outbreaks that typified the region. Horizontal measurements also provide some evidence suggesting the possible influx of Saharan dust from the free troposphere to the surface. This paper presents estimates of aerosol optical properties retrieved from the multi‐angle MPL measurements in addition to an outline of the methodologies employed to obtain these results.  相似文献   
7.
Suspended solids found in porewaters obtained in waterlogged soil sequences that included representative laterite–podzol transitions, associated brooks and major rivers of the Rio Negro watershed (Brazil) were studied using electron paramagnetic resonance (EPR) and Fourier-transform infrared spectroscopies. The main goal was to ascertain sources and track the evolution of suspended matter using a ubiquitous chemical species, FeIII complexed to organic matter (FeOM). Three size fractions were separated by tangential-flow (ultra)filtration: particulate (> 0.2 μm), dense (P) and light (Ps), and colloidal (5 kD < Col. < 0.2 μm) fractions. Quantitative results were acquired for Col. and Ps fractions which are predominantly organic in nature.FeOM concentration (in ‰ dry weight) was determined to be relatively low in suspended solids found in black waters from podzol porewaters and brooks whereas in the main rivers it was several times higher. FeOM concentrations were also correlated with Fe(II)/Fe(III) ratios in solution; these ratios were high in podzol porewaters and low in the rivers. Considering that organic complexation of Fe(II) is minor when compared to that of Fe(III), two interpretations were proposed to account for the above observation. First, [FeOM] was assumed to be distributed along a mixing line, with the clear waters from laterites and the black waters from podzols being its end-members. Consequently, [FeOM] can be used to trace the source of suspended material. Second, dissolved Fe(II) from podzol areas was considered to be progressively oxidized as pore waters move towards the mainstream. According to this mechanism, iron is complexed by organic matter or precipitated as oxides, thus producing an evolution of colloidal matter. As a result of these mechanisms' action, both the high production of Fe(II) and organic matter at the waterlogged podzol–laterite transition areas are major factors affecting iron export in the Rio Negro watershed.  相似文献   
8.
In some ore deposits, the grade distribution is heavy-tailed and high values make the inference of first- and second-order statistics nonrobust. In the case of gold data, high values are usually cut and the block estimation is performed using truncated grades. With this method, a part of the deposit is omitted, resulting in a potential bias on resources figures. Ad-hoc corrections can be applied on the final figures to take into account the tail of the grade distribution, but no theoretical guidelines are available. A geostatistical model has been developed to handle high values based on the assumption that for high grade zones, the only tangible information is the geometry. The grade variable z can be split into three parts: the truncated grade ( $\operatorname{Min} (z, z_{\mathrm{e}})$ where z e is the top-cut grade), a weighted indicator above top-cut grade (1{zz e}), and a residual. Within this framework, the residual is poorly structured, and in most cases is a pure nugget-effect. Moreover, it has no spatial correlation with the truncated grade and the indicator above top-cut grade. This decomposition makes the variographic study more robust because variables (indicator and truncated grade) do not keep high grade values. The underlying hypotheses can be tested on experimental indicator variograms and the top-cut grade can be justified. Finally, the estimation is based on a truncated grade and indicator cokriging. The model is applied to blast holes from a gold deposit and on a simulated example. Both cases illustrate the benefits of keeping the high values in the estimation process via an appropriate mathematical model.  相似文献   
9.
Jean-Philippe Bellot   《Tectonophysics》2008,449(1-4):133-144
The role of fluids in the deformation of continental serpentinites is investigated from structural, microstructural and petrographic analyses applied to a km-scale porphyroclast mantled in a viscous matrix of amphibolites. The clast is sited within a shear zone of the Palaeozoic Maures massif, France. Syntectonic fluid–rock interactions occurred from km to mm scales, at first on the clast borders (along the main rheological boundaries) then within the clast. They are accommodated macroscopically by slickenfibers faults and microscopically by shear microcracks within crack-seal veins, typifying an intermediate, brittle–ductile behaviour of serpentinites. Three main stages of deformation–serpentinisation processes occurred in relation with the left-lateral movement of the hosted shear zone. They developed under metamorphic conditions evolving from amphibolites to green-schists facies conditions ( 400 MPa/550 °C to  200 MPa/< 300 °C), as inferred from the surrounding sheared amphibolites. Deformation and serpentinisation increase through time although fluid pressure decreases. If the shape of the inclusion and its orientation relative to the shear zone mainly controlled the deformation pattern though time (P then R' shears), fluid pressure is required for starting deformation–serpentinisation processes along inherited anisotropy planes. Whatever the origin of fluids, they play a key role all along the deformation processes by influencing stress states within the shear zone at the onset of deformation and by changing at various scales and through time behaviour of the rock, depending of the intensity of serpentinisation and the rate of deformation.  相似文献   
10.
Eclogite lenses in the Agualada Unit (western Ordenes Complex, Spain) contain the peak mineral assemblage garnet (prograde rim: Alm = 48 mol%, Prp = 30 mol%), omphacite (Jd max = 36 mol%), quartz, rutile and rare zoisite, which equilibrated at T = 700 °C and P > 12–14 kbar. Garnet shows discontinuous growth zoning, with a pyrope-poor intermediate zone (Alm = 51 mol%, Prp = 10 mol%) between a core zone where pyrope is slightly higher (Alm = 46 mol%, Prp = 16 mol%) and areas just inward from the rims where the maximum pyrope contents (Alm = 48 mol%, Prp = 30 mol%) are recorded. In atoll interiors, garnet contains inclusions of a first generation of omphacite (Jd max = 40 mol%). This omphacite is replaced in the matrix by a second generation (Jd max = 36 mol%) with higher Fe/Fe + Mg ratio. The compositions of garnet and omphacite suggest a complex syneclogitic tectonothermal evolution for the Agualada Unit, characterized by: (1) eclogite-facies metamorphism (T = 585 °C, P > 12–13 kbar), followed by (2) cooling during a slight decompression (T = 500 °C, P > 11–12 kbar), and (3) a final increase in P and T to form the garnet rim-matrix omphacite mineral assemblage. The Agualada Unit is part of a subduction complex which affected the Gondwana margin at the beginning of the Variscan cycle. The P-T evolution of the Agualada eclogites is closely related to the structural evolution of the accretionary complex and the whole orogenic wedge. The cooling event recorded by the Agualada eclogites may have resulted from the accretion of a new colder crustal slice under the unit, whereas the final progradation reflects the emplacement of the Agualada Unit directly under the mantle wedge. This evolution fits well with previously presented the retical models, both for the tectonothermal evolution of accretionary complexes and for the dynamic evolution of orogenic wedges. P-T paths such as the one for the Agualada Unit eclogites, probably reflect a prolonged structural evolution. Although evidently rarely preserved, such paths are probably the rule rather than the exception during plate convergence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号