首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
地质学   1篇
天文学   30篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1997年   1篇
  1980年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and -2 approached the nucleus of comet 1P/Halley and flew by at a small distance. A while later, on March 14, 1986, the Giotto spacecraft (European Space Agency (ESA)) followed them. Together with the Japanese spacecraft Suisei (Japan Aerospace Exploration Agency (JAXA)), they obtained spaceborne investigations of cometary nuclei. Direct studies of cometary bodies that bear traces of the Solar System formation were continued in the next missions to comets. Starting from 2014 and up to 2016 September, the Rosetta spacecraft (ESA), being in a low orbit around the nucleus of comet 67P/Churyumov–Gerasimenko, has performed extremely sophisticated investigations of this comet. Here, we compare some results of these missions. The paper is based on the reports presented at the memorial conference dedicated to the 30th anniversary of the Vega mission, which took place at the Space Research Institute of the Russian Academy of Sciences in March, 2016, and does not pretend to comprehensively cover the problems of cometary physics.  相似文献   
2.
3.
In recent decades, investigations of Pluto with up-to-date astronomical instruments yielded results that have been generally confirmed by the New Horizons mission. In 2006, in Prague, the General Assembly of the International Astronomical Union (IAU) reclassified Pluto as a member of the dwarf planet category according to the criteria defined by the IAU for the term “planet”. At the same time, interest in studies of Pluto was increasing, while the space investigations of Pluto were delayed. In 2006, the New Horizons Pluto spacecraft started its journey to Pluto. On July 14, 2015, the spacecraft, being in fly-by mode, made its closest approach to Pluto. The heterogeneities and properties of the surface and rarified atmosphere were investigated thoroughly. Due to the extreme remoteness of the spacecraft and the energy limitations, it will take 18 months to transmit the whole data volume. Along with the preliminary results of the New Horizons Pluto mission, this paper reviews the basics on Pluto and its moons acquired from the ground-based observations and with the Hubble Space Telescope (HST). There are only a few meteorite craters on the surfaces of Pluto and Charon, which distinctly marks them apart from such satellites of the giant planets as Ganymede and Callisto. The explanation is that the surface of Pluto is young: its age is estimated at less than 100 Myr. Ice glaciers of apparently a nitrogen nature were found. Nitrogen is also the main component of the atmosphere of Pluto. The planet demonstrates the signs of strong geologic activity, though the energy sources of these processes are unknown.  相似文献   
4.
With a view to the further development of the short exposure method with a CCD detector, new observations of the planet Mercury were carried out at the Abastumany Astrophysical Observatory, Republic of Georgia, from October 30 to November 8, 2001. Comparison with the previous data, as well as the results of data processing based on newly developed algorithms, points to considerable progress achieved in the technique for observing Mercury. In some cases, under very favorable atmospheric conditions, the resolution attained is close to the diffraction limit of the astronomic instrument used. For the first time, topographic features on Mercury's surface were reliably resolved. Features with linear sizes as small as 120 km are successfully identified in the disk center.  相似文献   
5.
Plans to send orbiter missions to Mercury (e.g., NASA's Messenger and ESA's BepiColombo) have prompted renewed efforts to investigate the surface of Mercury using ground-based remote sensing. While the highest resolution instrumentation optical telescopes (e.g. HST) cannot be used at small angular distances (<45°) from the Sun (Mercury's elongation never exceeds 28° seen from Earth), advanced ground-based astronomical techniques and modern processing software can be used to construct resolved images of the poorly known part of Mercury. Our observations of the planet presented here were carried out mainly in April and May, 2002, at evening elongation of the planet, at the Skinakas astrophysical observatory of Heraklion University (Crete, Greece). A synthesis of the acquired images of the hemisphere of Mercury, which was not observed by the Mariner 10 mission (1974-1975), is presented. A double rim basin with an internal diameter of about 1000 km and an external rim about 2000 km is suggested by the data. We present the observational method, the data analysis approach, and the resulting images.  相似文献   
6.
The discovery in 1995 of the first extrasolar giant planet 51 Peg b initiated the physics of extrasolar planetary systems. By May 2004, the total number of the detected planets orbiting other stars was 122, including 24 hot jupiters, which have a semimajor axis of the orbit of less than 0.15 AU. Due to the high activity of researchers who work with the radial-velocity method, the probable candidates, say, in the 75-parsec radius, are quickly exhausted. The OGLE-type objects, even if their number increases, may only slightly contribute to the physics of extrasolar planets (or exoplanets), because even to determine the type of the companion (a giant planet, brown dwarf, or star of small mass) is extremely problematic for such weak objects. A search for Earth-like planets is still far beyond the technical capabilities: the Keplerian velocity of the Sun induced by the Earth is only 0.09 m/s, which requires to improve the results obtained by a factor of 20–30. Particularly important results were obtained in the observations of transits of the object HD 209458b, which became the only object of this type namely due to transits. The hope of finding another short-period object with similar transits is becoming less and less. The important role of the star metallicity in the formation of planetary systems predicted during the first years after the discovery of exoplanets has gained recognition and been developed successfully. Metallicity has become an indicator of the possible presence of planetary systems and, probably, even determines the type of planets. This review also considers the statistical data on the orbital and mass characteristics of exoplanets.  相似文献   
7.
Data on the results of the analysis of the content of re-processed panorama of the VENERA-9 lander are presented. The panorama was transmitted historically for the first time from the surface of Venus in 1975. The low noise of the VENERA-9 data allowed allocating a large object of an unusual regular structure. Earlier, its fuzzy image was repeatedly cited in the literature being interpreted as a ??strange stone??. The complex shape and its other features suggest that the object may be a real habitant of the planet. It is not excluded that another similar object observed was damaged during the VENERA-9 landing. From the evidence of its movement and position of some other similar objects it is concluded that because of the limited energy capacity, the physical action of the Venusian fauna may be much slower than that of the Earth fauna. Another question considered is what sources of energy could be used by life in the conditions of the high temperature oxygenless atmosphere of the planet. It is natural to assume that, like on Earth, the Venusian fauna is heterotrophic and should be based on hypothetical flora, using photosynthesis (based on an unknown high temperature biophysical mechanism).  相似文献   
8.
New classes of extrasolar planets with relatively small masses (“super-Earths”) located in low orbits near low luminosity stars possess moderately high temperature and atmospheric pressure at their surfaces. Such physical conditions and composition of an atmosphere is incompatible with the Earth’s aminonucleic acid form of life. But should they be considered as conditions incompatible with any form of life at all? Considering the conditions on Venus as a possible analogue of physical conditions on low-orbiting exoplanets of the “super-Earths” type, a new analysis of Venusian surface panoramas’ details has been made. These images were produced by the VENERA landers in 1975 and 1982. Also the images which had not been previously considered were included in the processing. A few relatively large objects were found with size ranging from a decimeter to half meter and with unusual morphology. The objects were observed in some images, but were absent in the other or altered their shape. The article presents the obtained results and analyzes the evidence of reality of these objects.  相似文献   
9.
10.
The emergence of life based on amino acids and RNA/DNA on an Earth-type planet requires quite narrow ranges for many of the planet's physical parameters, most notably its mass and temperature conditions. In addition, only stars of F to K spectral types can have planets suitable for life, and only very favorable combinations of certain parameters can provide the necessary conditions for evolution into multicellular animals. A planet must have a mass about 5 · 1027 g; some zones with favorable thermal conditions (273-340 K); an atmosphere that is capable of absorbing hard external radiation but is transparent to photons with energies of 1-3 eV; a sufficient density of stellar radiation; the presence of other sources of energy, e.g., of oxidation species in the atmosphere; moderate gravitation; open water with big islands or continents; a moderate rotation period, orbital eccentricity, and inclination of the equatorial plane to the orbital plane; intensive meteoritic impacts or other cosmic catastrophes, which stimulate evolution of the most perfect beings; one or more massive satellites; and intensive volcanism and/or plate tectonics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号