首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
地球物理   2篇
海洋学   5篇
天文学   21篇
自然地理   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1971年   1篇
排序方式: 共有29条查询结果,搜索用时 78 毫秒
1.
The interplanetary mission, Venera-D, which is currently being planned, includes a lander. For a successful landing, it is necessary to estimate the frequency distributions of slopes of the Venusian surface at baselines that are comparable with the horizontal dimensions of lander (1–3 m). The available data on the topographic variations on Venus preclude estimates of the frequency of the short-wavelength slopes. In our study, we applied high-resolution digital terrain models (DTM) for specific areas in Iceland to estimate the slopes on Venus. The Iceland DTMs have 0.5 m spatial and 0.1 m vertical resolution. From the set of these DTMs, we have selected those that morphologically resemble typical landscapes on Venus such as tessera, shield, regional, lobate, and smooth plains. The mode of the frequency distribution of slopes on the model tessera terrain is within a 30°–40° range and a fraction of the surface has slopes <7°, which is considered as the upper safety limit. This is the primary interest. The frequency distribution of slopes on the model tessera is not changed significantly as the baseline is changed from 1 m to 3 m. The terrestrial surfaces that model shield and regional plains on Venus have a prominent slope distribution mode between 8°–20° and the fraction of the surfaces with slopes <7° is less than 30% on both 1 m and 3 m baselines. A narrow, left-shifted histogram characterizes the model smooth plains surfaces. The fraction of surfaces with slopes <7° is about 65–75% for the shorter baseline (1 m). At the longer baseline, the fraction of the shallow-sloped surfaces is increased and fraction of the steep slopes is decreased significantly. The fraction of surfaces with slopes <7° for the 3-m baseline is about 75–88% for the terrains that model both lobate and smooth plains.  相似文献   
2.
We discuss a change in the resurfacing regimes of Venus and probable ways of forming the terrain types that make up the surface of the planet. The interpretation of the nature of the terrain types and their morphologic features allows us to characterize their scientific priority and the risk of landing on their surface to be estimated. From the scientific point of view, two terrain types are of special interest and represent easily achievable targets: the lower unit of regional plains and the smooth plains associated with impact craters. Regional plains are probably a melting from the upper fertile mantle. The material of smooth plains of impact origin is a well-mixed and representative sample of the Venusian crust. The lower unit of regional plains is the most widespread one on the surface of Venus, and it occurs within the boundaries of all of the precalculated approach trajectories of the lander. Smooth plains of impact origin are crossed by the approach trajectories precalculated for 2018 and 2026.  相似文献   
3.
Atmospheric aerosols play an important role in forming the Martian climate. However, the basic physical properties of the Martian aerosols are still poorly known; there are many contradictions in their estimates. We present an analytical overview of the published results and potentialities of various methods. We consider mineral dust. Zonally averaged data obtained from mapping IR instruments (TES and IRTM) give the optical thickness of mineral aerosols 9 = 0.05–0.1 in the 9-m band for quite atmospheric conditions. There is a problem of comparing these estimates with those obtained in the visible spectral range. We suggest that the commonly used ratio vis/9 >2 depends on the interpretation and it may actually be smaller. The ratio vis/9 1 is in better agreement with the IRIS data (materials like montmorillonite). If we assume that vis/9 = 1 and take into account the nonspherical particle shape, then the interpretation of ground-based integrated polarimetric observations ( < 0.04) can be reconciled with IR measurements from the orbit. However, for thin layers, the sensitivity of both methods to the optical thickness is poorly understood: on the one hand, polarimetry depends on the cloud cover and, on the other hand, the interpretation of IR measurements requires that the atmospheric temperature profile and the surface temperature and emissivity be precisely known. For quite atmospheric conditions, the local optical-thickness estimates obtained by the Bouguer–Lambert–Beer method and from the sky brightness measured from Viking 1 and 2 and Mars Pathfinder landers are much larger: = 0.3–0.6. Estimates of the contrasts in images from theVikingorbiters yield the same values. Thus, there is still a factor of 3 to 10 difference between different groups of optical-thickness estimates for the quiet atmosphere. This difference is probably explained by the contribution of condensation clouds and/or by local/time variations.  相似文献   
4.
Venus Express is the first European (ESA) mission to the planet Venus. Its main science goal is to carry out a global survey of the atmosphere, the plasma environment, and the surface of Venus from orbit. The payload consists of seven experiments. It includes a powerful suite of remote sensing imagers and spectrometers, instruments for in-situ investigation of the circumplanetary plasma and magnetic field, and a radio science experiment. The spacecraft, based on the Mars Express bus modified for the conditions at Venus, provides a versatile platform for nadir and limb observations as well as solar, stellar, and radio occultations. In April 2006 Venus Express was inserted in an elliptical polar orbit around Venus, with a pericentre height of ~250 km and apocentre distance of ~66000 km and an orbital period of 24 hours. The nominal mission lasted from June 4, 2006 till October 2, 2007, which corresponds to about two Venus sidereal days. Here we present an overview of the main results of the nominal mission, based on a set of papers recently published in Nature, Icarus, Planetary and Space Science, and Geophysical Research Letters.  相似文献   
5.
Observations of the 1.10- and 1.18-μm nightside windows by the SPICAV-IR instrument aboard Venus Express were analyzed to characterize the various sources of gaseous opacity and determine the H2O mole fraction in the lower atmosphere of Venus. We showed that the line profile model of Afanasenko and Rodin (Afanasenko, T.S., Rodin, A.V. [2007]. Astron. Lett. 33, 203–210) underestimates the CO2 absorption in the high-wavelength wing of the 1.18-μm window and we derived an empirical lineshape that matches this wing well. An additional continuum opacity is required to reproduce the variation of the 1.10- and 1.18-μm radiances with surface elevation as observed by the VIRTIS-M instrument aboard Venus Express. A constant absorption coefficient of 0.7 ± 0.2 × 10−9 cm−1 am−2 best reproduces the observed variation. We compared spectra calculated with different CO2 and H2O line lists. We found that the CDSD line list lacks the 5ν1 + ν3 series of CO2 bands, which provide significant opacity in Venus’ deep atmosphere, and we have constructed a composite line list that best reproduces the observations. We also showed for the first time that HDO brings significant absorption at 1140–1190 nm. Using the best representation of the atmospheric opacity we could reach, we retrieved a water vapor mole fraction of ppmv, pertaining to the altitude range 5–25 km. Combined with previous measurements in the 1.74- and 2.3-μm windows, this result provides strong evidence for a uniform H2O profile below 40 km, in agreement with chemical models.  相似文献   
6.
Direct observation of exoplanets will make it possible to clarify many principal questions connected both with extrasolar planets and planetary systems and to measure atmospheric spectra of the planets. Obtaining an exoplanet image not distorted by the light from a star is at the cutting edge of present-day optical technologies owing to the combination of tremendous brightness contrasts and small angular distances between the planet and star. To observe the exo-Earth, it is necessary to weaken the brightness of the parent star image by 9–10 orders of magnitude (in the optical and near-IR ranges). To compensate the influence of the atmosphere, ground-based (e.g., 8–10 m) telescopes intended for observing exoplanets are equipped with adaptive optics systems, the spatial and temporal resolutions of which are not yet sufficient. A meter-class space telescope equipped with a star coronagraph will make it possible to observe the nearest exoplanets. In this paper, an improved tool for star coronagraphy is considered, namely, the achromatic interferometric coronagraph with a variable rotational shear. It is fabricated according to the optical scheme of the common path interferometer for studying extrasolar planets by direct observations. Theoretical and experimental estimations for the main characteristics of the scheme were carried out. Laboratory experimental measurements were carried out on a coronagraph model.  相似文献   
7.
This paper presents an overview of the results of planetary atmospheric studies carried out by Russian scientists in 2011–2014. The overview is prepared at the Commission on Planetary Atmospheres of the National Geophysical Committee for the Russian national report on meteorology and atmospheric sciences for the XXVI General Assembly of the International Union of Geodesy and Geophysics (Prague, June 28 to July 07, 2015).  相似文献   
8.
The infrared AOTF spectrometer is a part of the SPICAM experiment onboard the Mars-Express ESA mission. The instrument has a capability of solar occultations and operates in the spectral range of 1-1.7 μm with a spectral resolution of ∼3.5 cm−1. We report results from 24 orbits obtained during MY28 at Ls 130°-160°, and the latitude range of 40°-55° N. For these orbits the atmospheric density from 1.43 μm CO2 band, water vapor mixing ratio based on 1.38 μm absorption, and aerosol opacities were retrieved simultaneously. The vertical resolution of measurements is better than 3.5 km. Aerosol vertical extinction profiles were obtained at 10 wavelengths in the altitude range from 10 to 60 km. The interpretation using Mie scattering theory with adopted refraction indices of dust and H2O ice allows to retrieve particle size (reff∼0.5-1 μm) and number density (∼1 cm−3 at 15-30 km) profiles. The haze top is generally below 40 km, except the longitude range of 320°-50° E, where high-altitude clouds at 50-60 km were detected. Optical properties of these clouds are compatible with ice particles (effective radius reff=0.1-0.3 μm, number density N∼10 cm−3) distributed with variance νeff=0.1-0.2 μm. The vertical optical depth of the clouds is below 0.001 at 1 μm. The atmospheric density profiles are retrieved from CO2 band in the altitude range of 10-90 km, and H2O mixing ratio is determined at 15-50 km. Unless a supersaturation of the water vapor occurs in the martian atmosphere, the H2O mixing ratio indicates ∼5 K warmer atmosphere at 25-45 km than predicted by models.  相似文献   
9.
European Venus Explorer (EVE): an in-situ mission to Venus   总被引:1,自引:0,他引:1  
The European Venus Explorer (EVE) mission was proposed to the European Space Agency in 2007, as an M-class mission under the Cosmic Vision Programme. Although it has not been chosen in the 2007 selection round for programmatic reasons, the EVE mission may serve as a useful reference point for future missions, so it is described here. It consists of one balloon platform floating at an altitude of 50–60 km, one descent probe provided by Russia, and an orbiter with a polar orbit which will relay data from the balloon and descent probe, and perform science observations. The balloon type preferred for scientific goals is one which oscillates in altitude through the cloud deck. To achieve this flight profile, the balloon envelope contains a phase change fluid, which results in a flight profile which oscillates in height. The nominal balloon lifetime is 7 days—enough for one full circumnavigation of the planet. The descent probe’s fall through the atmosphere takes 60 min, followed by 30 min of operation on the surface. The key measurement objectives of EVE are: (1) in situ measurement from the balloon of noble gas abundances and stable isotope ratios, to study the record of the evolution of Venus; (2) in situ balloon-borne measurement of cloud particle and gas composition, and their spatial variation, to understand the complex cloud-level chemistry; (3) in situ measurements of environmental parameters and winds (from tracking of the balloon) for one rotation around the planet, to understand atmospheric dynamics and radiative balance in this crucial region. The portfolio of key measurements is complemented by the Russian descent probe, which enables the investigation of the deep atmosphere and surface.  相似文献   
10.
Microscopy and spectroscopy are important methods of studies. The use of a microscope onboard a spacecraft is connected with the fact that the closer approach to the objects and the switch to the in situ measurement methods have become possible. The combination of taking an image and performing a spectral analysis forms a new type of instrument, so-called videospectrometers. The scientific payload of the Phobos-Grunt spacecraft includes the microscope spectrometer designed to analyze the composition of the surface regolith of Phobos in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号