首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
测绘学   1篇
地球物理   14篇
地质学   10篇
海洋学   5篇
天文学   6篇
自然地理   4篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1991年   3篇
  1988年   1篇
  1986年   3篇
  1973年   2篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Jonathan Murdoch 《Area》1997,29(2):109-118
Summary In this paper it is proposed that the territory of governance is currently being reconfigured by the state. The state is pulling back from a universalist, welfare role, which entailed comprehensive governance of the whole national territory. Now a much more selective form of government is coming into being, concerned with 'community', 'diversity' and 'locality'. This is not, however, simply a belated recognition by the state that these are ever more important features of socio-spatial life: rather, it is part of the reconfiguration of the territory of government as the state invokes these characteristics in order to modify its ways of governing. Using Foucault's concept of governmentality–that is the means used by the state to 'problematise' life within its territorial borders and then act on the basis of these problematisations—the recent case of the Rural White Paper is examined. It is proposed that this is a very clear example of a governmental retreat from a comprehensive role in the governance of rural areas and shows how the state now seeks to govern 'through communities'.  相似文献   
2.
The identification of runoff contributing areas would provide the ideal focal points for water quality monitoring and Best Management Practice (BMP) implementation. The objective of this study was to use a field‐scale approach to delineate critical runoff source areas and to determine the runoff mechanisms in a pasture hillslope of the Ozark Highlands in the USA. Three adjacent hillslope plots located at the Savoy Experimental Watershed, north‐west Arkansas, were bermed to isolate runoff. Each plot was equipped with paired subsurface saturation and surface runoff sensors, shallow groundwater wells, H‐flumes and rain gauges to quantify runoff mechanisms and rainfall characteristics at continuous 5‐minute intervals. The spatial extent of runoff source areas was determined by incorporating sensor data into a geographic information‐based system and performing geostatistical computations (inverse distance weighting method). Results indicate that both infiltration excess runoff and saturation excess runoff mechanisms occur to varying extents (0–58% for infiltration excess and 0–26% for saturation excess) across the plots. Rainfall events that occurred 1–5 January 2005 are used to illustrate the spatial and temporal dynamics of the critical runoff source areas. The methodology presented can serve as a framework upon which critical runoff source areas can be identified and managed for water quality protection in other watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
3.
The spectrum of the highest redshift QSO 2000–330 (z=3.78) contains four heavy-element absorption systems withz abs>3.0. Interesting features include velocity structure atz abs=3.552 which suggests a cluster origin and a purely low ionization system atz abs=3.1881 typical of a galactic disk sightline.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   
4.
The theoretical limit to the precision (defined as the inverse of the square of the random error) of a radial-velocity determination of a solar-type star obtained from the technique of digital cross-correlation is constructed as a function of simple parameters of the recording of a stellar spectrum.The relationship is used to establish conditions for maximizing the precision for a given object, exposure time, and observing instrument. Both fibre-fed and Cassegrain-mounted spectrographs are considered.  相似文献   
5.
The response of deformable fractures to changes in fluid pressure controls phenomena ranging from the flow of fluids near wells to the propagation of hydraulic fractures. We developed an analysis designed to simulate fluid flows in the vicinity of asperity‐supported fractures at rest, or fully open fractures that might be propagating. Transitions between at‐rest and propagating fractures can also be simulated. This is accomplished by defining contact aperture as the aperture when asperities on a closing fracture first make contact. Locations on a fracture where the aperture is less than the contact aperture are loaded by both fluid pressure and effective stress, whereas locations where the aperture exceeds the contact aperture are loaded only by fluid pressure. Fluid pressure and effective stress on the fracture are determined as functions of time by solving equations of continuity in the fracture and matrix, and by matching the global displacements of the fracture walls to the local deformation of asperities. The resulting analysis is implemented in a numerical code that can simulate well tests or hydraulic fracturing operations. Aperture changes during hydraulic well tests can be measured in the field, and the results predicted using this analysis are similar to field observations. The hydraulic fracturing process can be simulated from the inflation of a pre‐existing crack, to the propagation of a fracture, and the closure of the fracture to rest on asperities or proppant. Two‐dimensional, multi‐phase fluid flow in the matrix is included to provide details that are obscured by simplifications of the leakoff process (Carter‐type assumptions) used in many hydraulic fracture models. Execution times are relatively short, so it is practical to implement this code with parameter estimation algorithms to facilitate interpretation of field data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties.We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration.We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.  相似文献   
7.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   
8.
For centuries, Bermuda has been challenged with wastewater management for the protection of human and environmental health. By quantifying the δ15N of the common sea fan Gorgonia ventalina sampled from 30 sites throughout Bermuda we show that sewage-derived nitrogen is detectable on nearshore coral reefs and declines across the lagoon to the outer rim. We also sampled gorgonians from two museum collections representing a 50y time-series (1958–2008). These samples revealed an increase in δ15N of > 4.0‰ until the mid-1970s, after which δ15N values slowly declined by ~ 2.0‰. A δ15N chronology from a gorgonian skeleton exhibited a similar decline over the last 30–40 years of approximately 0.6‰. We conclude that policies have been effective in reducing sewage impacts to Bermudian reefs. However, significant sources of sewage pollution persist and are likely have a strong impact on harbor and nearshore coral communities and human health.  相似文献   
9.
Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the North‐eastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre‐episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre‐episode ANC and change in discharge as independent variables. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South‐eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess ‘chemically new’ and ‘chemically old’ water sources during acidification episodes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
10.
Thermal methods are promising for remediating fractured geologic media contaminated with volatile organic compounds, and the success of this process depends on the coupled heat transfer, multiphase flow, and thermodynamics. This study analyzed field‐scale removal of trichloroethylene (TCE) and heat transfer behavior in boiling fractured geologic media using the multiple interacting continua method. This method can resolve local gradients in the matrix and is less computationally demanding than alternative methods like discrete fracture‐matrix models. A 2D axisymmetric model was used to simulate a single element of symmetry in a repeated pattern of extraction wells inside a large heated zone and evaluate effects of parameter sensitivity on contaminant recovery. The results showed that the removal of TCE increased with matrix permeability, and the removal rate was more sensitive to matrix permeability than any other parameter. Increasing fracture density promoted TCE removal, especially when the matrix permeability was low (e.g., <10?17 m2). A 3D model was used to simulate an entire treatment zone and the surrounding groundwater in fractured material, with the interaction between them being considered. Boiling was initiated in the center of the upper part of the heated region and expanded toward the boundaries. This boiling process resulted in a large increase in the TCE removal rate and spread of TCE to the vadose zone and the peripheries of the heated zone. The incorporation of extraction wells helped control the contaminant from migrating to far regions. After 22 d, more than 99.3% of TCE mass was recovered in the simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号