首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   21篇
  国内免费   8篇
测绘学   8篇
大气科学   51篇
地球物理   55篇
地质学   165篇
海洋学   65篇
天文学   189篇
综合类   2篇
自然地理   27篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   3篇
  2015年   13篇
  2014年   16篇
  2013年   24篇
  2012年   16篇
  2011年   33篇
  2010年   33篇
  2009年   34篇
  2008年   33篇
  2007年   27篇
  2006年   20篇
  2005年   16篇
  2004年   11篇
  2003年   19篇
  2002年   14篇
  2001年   13篇
  2000年   13篇
  1999年   11篇
  1998年   11篇
  1997年   15篇
  1996年   11篇
  1995年   12篇
  1994年   5篇
  1993年   7篇
  1992年   8篇
  1991年   10篇
  1990年   12篇
  1989年   6篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   6篇
  1982年   8篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1974年   8篇
  1973年   7篇
  1972年   2篇
  1970年   3篇
排序方式: 共有562条查询结果,搜索用时 31 毫秒
1.
油田抽油机的抽油杆幌动幅度过大,是引起抽油杆断裂的一个重要因素,检测这种幌动幅度是防止抽油杆断裂的一种有效手段。设计了一种基于面阵CCD和普通半导体激光器(LD)测量这种幌动的悬点投影测量方法,通过数字卷积滤波,达到了范围为0-40mm,误差<0.2mm的技术检测指标。  相似文献   
2.
The Mangala Valles system is an ∼ ∼900 km fluvially carved channel system located southwest of the Tharsis rise and is unique among the martian outflow channels in that it heads at a linear fracture within the crust as opposed to a collapsed region of chaos as is the case with the circum-Chryse channels. Mangala Valles is confined within a broad, north–south trending depression, and begins as a single valley measuring up to 350 km wide that extends northward from a Memnonia Fossae graben, across the southern highlands toward the northern lowlands. Approximately 600 km downstream, this single valley branches into multiple channels, which ultimately lose their expression at the dichotomy boundary. Previous investigations of Mangala Vallis suggested that many of the units mapped interior to the valley were depositional, related to flooding, and that a minimum of two distinct periods of flooding separated by tens to hundreds of millions of years were required to explain the observed geology. We use infrared and visible images from the THermal EMission Imaging System (THEMIS), and topographic data from the Mars Orbiting Laser Altimeter (MOLA), to investigate the nature of the units mapped within Mangala Vallis. We find that the geomorphology of the units, as well as their topographic and geographic distribution, are consistent with most of them originating from a single assemblage of volcanic flow deposits, once continuous with volcanic flows to the south of the Memnonia Fossae source graben. These flows resurfaced the broad, north–south trending depression into which Mangala Vallis formed prior to any fluvial activity. Later flooding scoured and eroded this volcanic assemblage north of the Mangala source graben, resulting in the present distribution of the units within Mangala Vallis. Additionally, our observations suggest that a single period of catastrophic flooding, rather than multiple periods separated by tens to hundreds of millions of years, is consistent with and can plausibly explain the interior geology of Mangala Vallis. Further, we present a new scenario for the source and delivery of water to the Mangala source graben that models flow of groundwater through a sub-cryosphere aquifer and up a fracture that cracks the cryosphere and taps this aquifer. The results of our model indicate that the source graben, locally enlarged to a trough near the head region of Mangala, would have required less than several days to fill up prior to any spill-over of water to the north. Through estimates of the volume of material missing from Mangala (13,000–20,000 km3), and calculation of mean discharge rates through the channel system (∼ ∼5 × 106 m3 s−1), we estimate that the total duration of fluvial activity through the Mangala Valles was 1–3 months.  相似文献   
3.
Complete hydrochemical data are rarely reported for coal-mine discharges (CMD). This report summarizes major and trace-element concentrations and loadings for CMD at 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania. Clean-sampling and low-level analytical methods were used in 1999 to collect data that could be useful to determine potential environmental effects, remediation strategies, and quantities of valuable constituents. A subset of 10 sites was resampled in 2003 to analyze both the CMD and associated ochreous precipitates; the hydrochemical data were similar in 2003 and 1999. In 1999, the flow at the 140 CMD sites ranged from 0.028 to 2210 L s−1, with a median of 18.4 L s−1. The pH ranged from 2.7 to 7.3; concentrations (range in mg/L) of dissolved (0.45-μm pore-size filter) SO4 (34–2000), Fe (0.046–512), Mn (0.019–74), and Al (0.007–108) varied widely. Predominant metalloid elements were Si (2.7–31.3 mg L−1), B (<1–260 μg L−1), Ge (<0.01–0.57 μg L−1), and As (<0.03–64 μg L−1). The most abundant trace metals, in order of median concentrations (range in μg/L), were Zn (0.6–10,000), Ni (2.6–3200), Co (0.27–3100), Ti (0.65–28), Cu (0.4–190), Cr (<0.5–72), Pb (<0.05–11) and Cd (<0.01–16). Gold was detected at concentrations greater than 0.0005 μg L−1 in 97% of the samples, with a maximum of 0.0175 μg L−1. No samples had detectable concentrations of Hg, Os or Pt, and less than half of the samples had detectable Pd, Ag, Ru, Ta, Nb, Re or Sn. Predominant rare-earth elements, in order of median concentrations (range in μg/L), were Y (0.11–530), Ce (0.01–370), Sc (1.0–36), Nd (0.006–260), La (0.005–140), Gd (0.005–110), Dy (0.002–99) and Sm (<0.005–79). Although dissolved Fe was not correlated with pH, concentrations of Al, Mn, most trace metals, and rare earths were negatively correlated with pH, consistent with solubility or sorption controls. In contrast, As was positively correlated with pH.  相似文献   
4.
Euglena gracilis makes two small Cd-binding proteins/peptides (Cd-BP I and Cd-BP II) in response to exposure to Cd2+. These proteins migrate slower than mammalian Cd-metallothionein (Cd-Mt) through Sephadex G-75, but like Cd-Mt also contain Zn and are separated into two species when chromatographed over a DEAE column. Both BPs are much less stable than Cd-Mt under acidic conditions. One source of this instability is that at least Cd-BP II contains acid-labile sulfide co-ordinated to the metals. It has been quantitated in Cd-BP II and shown to have a value of 1·25 ± 0·10 S2−/Cd. The reactivity of the Cd-binding sites in ligand substitution and thioldisulfide exchange reactions has been assessed. The reactions of Cd-BP I and II with pyridylazoresorcinol (PAR) were slow and displayed complex kinetic behavior. Similarly, both Cd-BPs react slowly and with complicated kinetics with 5,5′-dithiobis-(2-nitrobenzoate).  相似文献   
5.
The sedimentary record of 130 km of microtidal (0.9 m tidal range) high wave energy (1.5 m average wave height) barrier island shoreline of the Cape Lookout cuspate foreland has been evaluated through examination of 3136 m of subsurface samples from closely spaced drill holes. Holocene sedimentation and coastal evolution has been a function of five major depositional processes: (1) eustatic sea-level rise and barrier-shoreline transgression; (2) lateral tidal inlet migration and reworking of barrier island deposits; (3) shoreface sedimentation and local barrier progradation; (4) storm washover deposition with infilling of shallow lagoons; and (5) flood-tidal delta sedimentation in back-barrier environments.

Twenty-five radiocarbon dates of subsurface peat and shell material from the Cape Lookout area are the basis for a late Holocene sea-level curve. From 9000 to 4000 B.P. eustatic sea level rose rapidly, resulting in landward migration of both barrier limbs of the cuspate foreland. A decline in the rate of sea-level rise since 4000 B.P. resulted in relative shoreline stabilization and deposition of contrasting coastal sedimentary sequences. The higher energy, storm-dominated northeast barrier limb (Core and Portsmouth Banks) has migrated landward producing a transgressive sequence of coarse-grained, horizontally bedded washover sands overlying burrowed to laminated back-barrier and lagoonal silty sands. Locally, ephemeral tidal inlets have reworked the transgressive barrier sequence depositing fining-upward spit platform and channel-fill sequences of cross-bedded, pebble gravel to fine sand and shell. Shoreface sedimentation along a portion of the lower energy, northwest barrier limb (Bogue Banks) has resulted in shoreline progradation and deposition of a coarsening-up sequence of burrowed to cross-bedded and laminated, fine-grained shoreface and foreshore sands. In contrast, the adjacent barrier island (Shackleford Banks) consists almost totally of inlet-fill sediments deposited by lateral tidal inlet migration. Holocene sediments in the shallow lagoons behind the barriers are 5–8 m thick fining-up sequences of interbedded burrowed, rooted and laminated flood-tidal delta, salt marsh, and washover sands, silts and clays.

While barrier island sequences are generally 10 m in thickness, inlet-fill sequences may be as much as 25 m thick and comprise an average of 35% of the Holocene sedimentary deposits. Tidal inlet-fill, back-barrier (including flood-tidal delta) and shoreface deposits are the most highly preservable facies in the wave-dominated barrier-shoreline setting. In the Cape Lookout cuspate foreland, these three facies account for over 80% of the sedimentary deposits preserved beneath the barriers. Foreshore, spit platform and overwash facies account for the remaining 20%.  相似文献   

6.
A combination of CTD casts, discrete bottle sampling and in situ voltammetric microelectrode profiling was used to examine changing redox conditions in the water column at a single station south of the Bay Bridge in the upper Chesapeake Bay in late July/early August, 2002–2005. Short-term (2–4 h) fluctuations in the oxic/suboxic/anoxic interface were documented using in situ voltammetric solid-state electrodes. Profiles of dissolved oxygen and sulfide revealed tidally-driven vertical fluctuations of several meters in the depth and thickness of the suboxic zone. Bottom water concentrations of sulfide, Mn2+ and Fe2+ also varied over the tidal cycle by approximately an order of magnitude. These data indicate that redox species concentrations at this site varied more due to physical processes than biogeochemical processes. Based on analysis of ADCP data, tidal currents at this station were strongly polarized, with the principal axis of tidal currents aligned with the mainstem channel. Together with the chemical data, the ADCP analysis suggests tidal flushing of anoxic bottom waters with suboxic water from north of the site. The present study is thus unique because while most previous studies have focused on processes across relatively stable redox interfaces, our data clearly demonstrate the influence of rapidly changing physical mixing processes on water column redox chemistry.Also noted during the study were interannual differences in maximum bottom water concentrations of sulfide, Mn2+ and Fe2+. In 2003, for example, heavy spring rains resulted in severe hypoxia/anoxia in June and early July. While reported storm-induced mixing in late July/early August 2003 partially alleviated the low-oxygen conditions, bottom water concentrations of sulfide, Mn2+ and Fe2+ were still much higher than in the previous year. The latter implies that the response time of the microbial community inhabiting the suboxic/anoxic bottom waters to changing redox conditions is slow compared to the time scale of episodic mixing events. Bottom water concentrations of the redox-sensitive chemical species should thus be useful as a tracer to infer prior hypoxic/anoxic conditions not apparent from ambient oxygen levels at the time of sampling.  相似文献   
7.
8.
Thermodynamic stability constants have been estimated for the complexation of iron(III) with catecholate-type siderophores isolated from the marine bacterium Alteromonas luteoviolacea and from the marine cyanobacterium Synechococcus sp. PCC 7002. Stability constants were determined utilizing the “chelate scale” of Taylor et al. (1994). The scale is based upon a linear relationship between the reduction potentials and the pH-independent thermodynamic stability constants for known iron(III) complexes. Log K values for the alterobactin B ferric iron complex are 43.6 ± 1.5 at pH 8.2 and 37.6 ± 1.2 at pH 6, consistent with a shift from bis-catecholate to monosalicylate/monocatecholate iron coordination with decreasing pH. Synechococcus isolates PCC 7002 Nos. 1 and 3 formed iron(III) complexes with stability constants of approximately 38.1 ± 1.2 and 42.3 ± 1.5, respectively. The binding strengths of the iron(III) complexes examined in this study are quite high, suggesting that catecholate siderophores may play a role in the solubilization and biological uptake of iron in the marine environment.  相似文献   
9.
Geomorphic, stratigraphic, and faunal observations of submarine slide scars that occur along the flanks of Monterey Canyon in 2.0–2.5 km water depths were made to identify the processes that continue to alter the surface of a submarine landslide scar after the initial slope failure. Deep-sea chemosynthetic biological communities and small caves are common on the sediment-free surfaces of the slide scars, especially along the headwall. The chemosynthetic organisms observed on slide scars in Monterey Canyon undergo a faunal succession based in part on their ability to maintain their access to the redox boundaries in the sediment on which they depend on as an energy source. By burrowing into the seafloor, these organisms are able to follow the retreating redox boundaries as geochemical re-equilibration occurs on the sole of the slide. As these organisms dig into the seafloor on the footwall, they often generate small caves and weaken the remaining seafloor. While chemosynthetic biological communities are typically used as indicators of fluid flow, these communities may be supported by methane and hydrogen sulfide that are diffusing out of the fresh seafloor exposed at the sole of the slide by the slope failure event. If so, these chemosynthetic biological communities may simply mark sites of recent seafloor exhumation, and are not reliable fluid seepage indicators.  相似文献   
10.
Iodate (IO3) is the predominant dissolved species of iodine in the oxygenated waters of the Mediterranean Sea. Iodide (I) is present in significant quantities (up to 65 nM) in oxygenated waters in the photic zone and near the interface above the anoxic and saline Bannock Basin. Lesser quantities of I (< 10 nM) are found throughout the rest of the oxic water column. An additional unidentified dissolved iodine species is present immediately above the anoxic interface.Total dissolved iodine (ΣI) increases dramatically across the seawater/brine interface. Part of this increase is undoubtedly the result of the dissolution of iodine-rich evaporites during formation of the brine bodies at the Tyro and Bannock Basins. The vertical distribution of ΣI and other dissolved chemical species (particularly PO43−) in the Bannock Basin brine, however, suggests an additional, present-day, diagenetic source of dissolved iodine to the brine. Based on the increase in the concentration of the most soluble major ions across the seawater/brine interface, 5–7 μM of the 11.5-μM increase in ΣI concentration must be attributed to diagenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号