首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   3篇
大气科学   1篇
地质学   5篇
海洋学   3篇
天文学   17篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2010年   3篇
  2007年   1篇
  2004年   6篇
  2000年   1篇
  1997年   1篇
  1990年   2篇
  1989年   4篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有26条查询结果,搜索用时 78 毫秒
1.
The dust coma of Comet P/Churyumov-Gerasimenko was monitored in the infrared (1–20 μm) from September 1982 to March 1983. Maximum dust production rate of ~2 × 105 g/sec occured in December, 1 month postperihelion. The ratio of dust/gas production was higher than that in other short-period comets. No silicate feature was visible in the 8- to 13-μm spectrum on 23 October. The mean geometric albedo of the grains was ~0.04 at 1.25 μm and ~0.05 at 2.2 μm.  相似文献   
2.
The connection between avalanche dynamics and space physics has been studied for several years. In that context we recently suggested an avalanche model which explains the phenomena of reconnection. In this work the model is generalized to include the influence of an extremely strong perturbation, reflecting the effect of plasma storms originating from the sun. In addition, we allow for diffusion processes and show that the behavior changes with the onset of diffusion processes, rendering it quasi-periodic, along with the supression of small-size avalanches.  相似文献   
3.
If the "11.3 microns" emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is due to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns (885 and 770 cm-1). Moderate-resolution spectra of NGC 7027, HD 44179, IRAS 21282+5050, and BD + 30 degrees 3639 are presented which show that the "11.3 microns" feature actually peaks at 11.22 microns (891 cm-1). The spectra also show evidence of new emission features near 11.9 and 12.7 microns (840 and 787 cm-1). These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. The observed asymmetry of the "11.3 microns" band is consistent with the slight anharmonicity expected in the C--H out-of-plane bending mode in PAHs. Laboratory experiments show that the intensity of this mode relative to the higher frequency modes depends on the extent of molecular "clustering." The observed strengths of the "11.3 microns" interstellar bands relative to the higher frequency bands are most consistent with the features originating from free molecular PAHs. The intensity and profile of the underlying broad structure, however, may well arise from PAH clusters and amorphous carbon particles. Analysis of the 11-13 microns (910-770 cm-1) emission suggests that the molecular structures of the most intensity emitting free PAHs vary somewhat between the high-excitation environment in NGC 7027 and the low-excitation but high-flux environment close to HD 44179. Finally, a previously undetected series of regularly spaced features between 10 and 11 microns (1000 and 910 cm-1) in the spectrum of HD 44179 suggests that a simple polyatomic hydride is present in the gas phase in this object.  相似文献   
4.
A brief discussion of the infrared observations from 4 to 20 micrometers of seven comets is presented. The observed infrared emission from comets depends primarily on their heliocentric distance. A model based on grain populations composed of a mixture of silicate and amorphous carbon particles in the mass ratio of about 40 to 1, with a power-law size distribution similar to that inferred for comet Halley, is applied to the observations. The model provides a good match to the observed heliocentric variation of both the 10 micrometers feature and the overall thermal emission from comets West and Halley. Matches to the observations of comet IRAS-Araki-Alcock and the antitail of comet Kohoutek require slightly larger grains. While the model does not match the exact profile and position of the 3.4 micrometers feature discovered in comet Halley, it does produce a qualitative fit to the observed variation of the feature's strength as a function of heliocentric distance. The calculations predict that the continuum under the 3.4 micrometers feature is due primarily to thermal emission from the comet dust when the comet is close to the Sun and to scattered solar radiation at large heliocentric distances, as is observed. A brief discussion of the determination of cometary grain temperatures from the observed infrared emission is presented. It is found that the observed shape of the emission curve from about 4 to 8 micrometers provides the best spectral region for estimating the cometary grain temperature distribution.  相似文献   
5.
Genomic data can be a useful tool in the management and conservation of biodiversity. Here, we report the development of genomic resources for the spotted ragged-tooth shark Carcharias taurus using genome-wide DNA data from Illumina next-generation sequencing. We explored two commonly used genetic marker types: microsatellites and mitochondrial DNA. A total of 4 394 putative microsatellites were identified, of which 10 were tested on 24 individuals and found to have ideal properties for population genetic analyses. Additionally, we reconstructed the first complete mitochondrial genome of a South African spotted ragged-tooth shark, and highlight the most informative gene regions to facilitate future primer design. The data reported here may serve as a resource for future studies and can ultimately be applied in the sustainable conservation and fisheries management of this apex predator.  相似文献   
6.
The interstellar medium of the Milky Way possesses a remarkable rangeof components, which have individual lifetimes considerably less than aHubble time. Consequently, there has been a major effort inunderstanding the properties of these components, their heating andcooling mechanisms, and the process by which one component istransformed into another. We review several of the issues in an effort tohighlight controversies that are under study presently. One of the centraldebates involves star formation, where there are two general andconflicting theoretical models. Another issue deals with the efforts tounderstand the fractional amounts of gas in the various phases, whichbrings together star formation with global gas dynamical reactions. Thisinteraction is responsible for heating of the gas by supernovae, causingsuperbubbles, and subsequently, either galactic winds or galacticfountains. The relative amounts of material in the hot and cold phasesnot only depends upon the supernova rate, it also depends upon details ofinterstellar models, such as whether thermal conduction is an importantprocess. We review the progress that people have made onself-consistent modeling of the ISM. The constraints on such models comefrom a wide variety of observations of molecular, neutral atomic, warmionized, and X-ray gas. Both observations and theory are represented atthis meeting and we highlight areas in which contributions are likely toresolve the existing controversies.  相似文献   
7.
Molecular simulations (energy minimizations and molecular dynamics) of an n-hexane soot model developed by Smith and co-workers (M. S. Akhter, A. R. Chughtai and D. M. Smith, Appl. Spectrosc., 1985, 39, 143; ref. 1) were performed. The MM+ (N. L. Allinger, J. Am. Chem. Soc., 1977, 395, 157; ref. 2) and COMPASS (H. Sun, J. Phys. Chem., 1998, 102, 7338; ref. 3) force fields were tested for their ability to produce realistic soot nanoparticle structure. The interaction of pyrene with the model soot was simulated. Quantum mechanical calculations on smaller soot fragments were carried out. Starting from an initial 2D structure, energy minimizations are not able to produce the observed layering within soot with either force field. Results of molecular dynamics simulations indicate that the COMPASS force field does a reasonably accurate job of reproducing observations of soot structure. Increasing the system size from a 683 to a 2732 atom soot model does not have a significant effect on predicted structures. Neither does the addition of water molecules surrounding the soot model. Pyrene fits within the soot structure without disrupting the interlayer spacing. Polycyclic aromatic hydrocarbons (PAH), such as pyrene, may strongly partition into soot and have slow desorption kinetics because the PAH-soot bonding is similar to soot–soot interactions. Diffusion of PAH into soot micropores may allow the PAH to be irreversibly adsorbed and sequestered so that they partition slowly back into an aqueous phase causing dis-equilibrium between soil organic matter and porewater.  相似文献   
8.
The thousand element array (THEA) system is a phased array system consisting of 1 m2 tiles having 64 Vivaldi elements each, arranged on a regular 8-by-8 grid, which has been developed as a demonstrator of technology and applicability for SKA. In this paper we present imaging results of Galactic neutral hydrogen with THEA. Measurements have been taken using a dense 2-by-2 array of four tiles as a four tile adder. The results are compared with results from the Leiden-Dwingeloo Survey, showing qualitative agreement, but also indicating that further studies are needed on the instrumental characteristics.  相似文献   
9.
Short dipoles are a key element in new low frequency array antennas as proposed for LOFAR and other astronomical applications. Unfortunately standard texts on short dipole antennas are based on the effective area and do not lead to an astronomically useful sensitivity formulation in a straightforward manner. The concept of maximum effective area is applied to arrays of short dipoles and allows expressing the sensitivity as the ratio of this area over the effective sky brightness temperature as long as the output noise power is dominated by the antenna input radiation. For both quantities we only need to know the array directivity pattern that includes the mutual coupling effects when the actual loading conditions of the array elements are taken into account. Short dipole elements have a constant directivity pattern for frequencies below resonance, but they exhibit strong complex impedance variations that provide only narrow band performance when power matching is applied as required in transmit applications. However, in receive applications voltage or current sensing can be realized, for example with an active balun. Assisted by the steep increase of the sky brightness with wavelength for frequencies below 300 MHz, this can provide sky noise dominated performance over at least a three to one frequency range. Still the low frequency limit is determined by the amplifier noise contribution and the losses in the antenna and in the dielectric ground surrounding the elements. We show that for a sparse array with the elements non-uniformly distributed according to an exponential shell model, a constant sensitivity can be obtained over a frequency range of at least two octaves. In addition, such a configuration has a factor of six greater sensitivity than a rectangular array for a large part of the frequency band.  相似文献   
10.
Continuum radiation from active galactic nuclei   总被引:1,自引:0,他引:1  
Summary Active galactic nuclei (AGN) can be divided into two broad classes, where the emitted continuum power is dominated either by thermal emission (radio-quiet AGN), or by nonthermal emission (blazars). Emission in the 0.01–1 m range is the primary contributor to the bolometric luminosity and is probably produced through thermal emission from an accretion disk, modified by electron scattering and general relativistic effects. The 1–1000 m continuum, the second most important contributor to the power, is generally dominated by thermal emission from dust with a range of temperatures from 40 K to 1000–2000 K. The dust is probably reemitting 0.01–0.3 m continuum emission, previously absorbed in an obscuring cone (or torus) or an extended disk. The 1–10 keV X-ray emission is rapidly variable and originates in a small region. This emission may be produced through Compton scattering by hot thermal electrons surrounding an accretion disk, although the observations are far from being definitive. The weak radio emission, which is due to the nonthermal synchrotron process, is usually elongated in the shape of jets and lobes (a core may be present too), and is morphologically distinct from the radio emission of starburst galaxies.In the blazar class, the radio through ultraviolet emission is decidedly non-thermal, and apparently is produced through the synchrotron process in an inhomogeneous plasma. The plasma probably is moving outward at relativistic velocities within a jet in which the Lorentz factor of bulk motion (typically 2–6) increases outward. This is inferred from observations indicating that the opening angle becomes progressively larger from the radio to the optical to the X-ray emitting regions. Shocks propagating along the jet may be responsible for much of the flux variability. In sources where the X-ray continuum is not a continuation of the optical-ultraviolet synchrotron emission, some objects show variability consistent with Compton scattering by relativistic electron in a large region (in BL Lacertae), while other objects produce their X-ray emission in a compact region, possibly suggesting pair production.When orientation effects are included, all AGN may be decomposed into a radio-quiet AGN, a blazar, or a combination of the two. Radio-quiet AGN appear to have an obscuring cone or torus containing the broad emission line clouds and an ionizing source. Most likely, the (non-relativistic) directional effects of this obscuring region give rise to the difference between Seyfert 1 and 2 galaxies or narrow and broad line radio galaxies. For different orientations of the nonthermal jet, relativistic Doppler boosting can produce BL Lacertae objects or FR I radio galaxies, or at higher jet luminosities, flat-spectrum high-polarization quasars or FR II radio galaxies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号