首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   18篇
  国内免费   1篇
测绘学   7篇
大气科学   51篇
地球物理   50篇
地质学   135篇
海洋学   49篇
天文学   103篇
自然地理   20篇
  2021年   3篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   13篇
  2014年   15篇
  2013年   18篇
  2012年   9篇
  2011年   15篇
  2010年   13篇
  2009年   23篇
  2008年   25篇
  2007年   21篇
  2006年   13篇
  2005年   13篇
  2004年   10篇
  2003年   16篇
  2002年   13篇
  2001年   12篇
  2000年   10篇
  1999年   10篇
  1998年   10篇
  1997年   13篇
  1996年   9篇
  1995年   11篇
  1994年   3篇
  1993年   7篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1982年   6篇
  1981年   3篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   6篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1963年   1篇
  1962年   1篇
排序方式: 共有415条查询结果,搜索用时 18 毫秒
1.
Complete hydrochemical data are rarely reported for coal-mine discharges (CMD). This report summarizes major and trace-element concentrations and loadings for CMD at 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania. Clean-sampling and low-level analytical methods were used in 1999 to collect data that could be useful to determine potential environmental effects, remediation strategies, and quantities of valuable constituents. A subset of 10 sites was resampled in 2003 to analyze both the CMD and associated ochreous precipitates; the hydrochemical data were similar in 2003 and 1999. In 1999, the flow at the 140 CMD sites ranged from 0.028 to 2210 L s−1, with a median of 18.4 L s−1. The pH ranged from 2.7 to 7.3; concentrations (range in mg/L) of dissolved (0.45-μm pore-size filter) SO4 (34–2000), Fe (0.046–512), Mn (0.019–74), and Al (0.007–108) varied widely. Predominant metalloid elements were Si (2.7–31.3 mg L−1), B (<1–260 μg L−1), Ge (<0.01–0.57 μg L−1), and As (<0.03–64 μg L−1). The most abundant trace metals, in order of median concentrations (range in μg/L), were Zn (0.6–10,000), Ni (2.6–3200), Co (0.27–3100), Ti (0.65–28), Cu (0.4–190), Cr (<0.5–72), Pb (<0.05–11) and Cd (<0.01–16). Gold was detected at concentrations greater than 0.0005 μg L−1 in 97% of the samples, with a maximum of 0.0175 μg L−1. No samples had detectable concentrations of Hg, Os or Pt, and less than half of the samples had detectable Pd, Ag, Ru, Ta, Nb, Re or Sn. Predominant rare-earth elements, in order of median concentrations (range in μg/L), were Y (0.11–530), Ce (0.01–370), Sc (1.0–36), Nd (0.006–260), La (0.005–140), Gd (0.005–110), Dy (0.002–99) and Sm (<0.005–79). Although dissolved Fe was not correlated with pH, concentrations of Al, Mn, most trace metals, and rare earths were negatively correlated with pH, consistent with solubility or sorption controls. In contrast, As was positively correlated with pH.  相似文献   
2.
A combination of CTD casts, discrete bottle sampling and in situ voltammetric microelectrode profiling was used to examine changing redox conditions in the water column at a single station south of the Bay Bridge in the upper Chesapeake Bay in late July/early August, 2002–2005. Short-term (2–4 h) fluctuations in the oxic/suboxic/anoxic interface were documented using in situ voltammetric solid-state electrodes. Profiles of dissolved oxygen and sulfide revealed tidally-driven vertical fluctuations of several meters in the depth and thickness of the suboxic zone. Bottom water concentrations of sulfide, Mn2+ and Fe2+ also varied over the tidal cycle by approximately an order of magnitude. These data indicate that redox species concentrations at this site varied more due to physical processes than biogeochemical processes. Based on analysis of ADCP data, tidal currents at this station were strongly polarized, with the principal axis of tidal currents aligned with the mainstem channel. Together with the chemical data, the ADCP analysis suggests tidal flushing of anoxic bottom waters with suboxic water from north of the site. The present study is thus unique because while most previous studies have focused on processes across relatively stable redox interfaces, our data clearly demonstrate the influence of rapidly changing physical mixing processes on water column redox chemistry.Also noted during the study were interannual differences in maximum bottom water concentrations of sulfide, Mn2+ and Fe2+. In 2003, for example, heavy spring rains resulted in severe hypoxia/anoxia in June and early July. While reported storm-induced mixing in late July/early August 2003 partially alleviated the low-oxygen conditions, bottom water concentrations of sulfide, Mn2+ and Fe2+ were still much higher than in the previous year. The latter implies that the response time of the microbial community inhabiting the suboxic/anoxic bottom waters to changing redox conditions is slow compared to the time scale of episodic mixing events. Bottom water concentrations of the redox-sensitive chemical species should thus be useful as a tracer to infer prior hypoxic/anoxic conditions not apparent from ambient oxygen levels at the time of sampling.  相似文献   
3.
4.
Geomorphic, stratigraphic, and faunal observations of submarine slide scars that occur along the flanks of Monterey Canyon in 2.0–2.5 km water depths were made to identify the processes that continue to alter the surface of a submarine landslide scar after the initial slope failure. Deep-sea chemosynthetic biological communities and small caves are common on the sediment-free surfaces of the slide scars, especially along the headwall. The chemosynthetic organisms observed on slide scars in Monterey Canyon undergo a faunal succession based in part on their ability to maintain their access to the redox boundaries in the sediment on which they depend on as an energy source. By burrowing into the seafloor, these organisms are able to follow the retreating redox boundaries as geochemical re-equilibration occurs on the sole of the slide. As these organisms dig into the seafloor on the footwall, they often generate small caves and weaken the remaining seafloor. While chemosynthetic biological communities are typically used as indicators of fluid flow, these communities may be supported by methane and hydrogen sulfide that are diffusing out of the fresh seafloor exposed at the sole of the slide by the slope failure event. If so, these chemosynthetic biological communities may simply mark sites of recent seafloor exhumation, and are not reliable fluid seepage indicators.  相似文献   
5.
Iodate (IO3) is the predominant dissolved species of iodine in the oxygenated waters of the Mediterranean Sea. Iodide (I) is present in significant quantities (up to 65 nM) in oxygenated waters in the photic zone and near the interface above the anoxic and saline Bannock Basin. Lesser quantities of I (< 10 nM) are found throughout the rest of the oxic water column. An additional unidentified dissolved iodine species is present immediately above the anoxic interface.Total dissolved iodine (ΣI) increases dramatically across the seawater/brine interface. Part of this increase is undoubtedly the result of the dissolution of iodine-rich evaporites during formation of the brine bodies at the Tyro and Bannock Basins. The vertical distribution of ΣI and other dissolved chemical species (particularly PO43−) in the Bannock Basin brine, however, suggests an additional, present-day, diagenetic source of dissolved iodine to the brine. Based on the increase in the concentration of the most soluble major ions across the seawater/brine interface, 5–7 μM of the 11.5-μM increase in ΣI concentration must be attributed to diagenesis.  相似文献   
6.
This paper describes the collection, reduction, and analysis of 0.4–1.0 m Mars imaging spectroscopy data obtained during the 1988 and 1990 oppositions from Mauna Kea Observatory and provides a general outline for the acquisition and analysis of similar imaging spectroscopy data sets. The U.H. 2.24-m Wide Field Grism CCD Spectrograph was used to collect 13 three-dimensional image cubes covering 90% of the planet south of 50°N in the 0.4–0.8 m region (/=245 at 0.6 m) and covering 55% of the planet south of 50°N in the 0.5–1.0 m region (/=293 at 0.75 m). Spectra extracted from these image cubes reveal the detailed character of the martian near-UV to visible spectrum. Images at red wavelengths reveal the classical albedo markings at 100–500 km spatial resolution while images at blue wavelengths show little surface feature contrast and are dominated by condensate clouds/hazes and polar ice. Many of the data acquisition, reduction, and analysis steps discussed here are new or unique to imaging spectroscopy data sets. These techniques exploit the information contained within the spatial domain of data such as these, thus allowing more traditional point-spectral analysis techniques to be expanded into an imaging format.  相似文献   
7.
Ocean Drilling Program (ODP) Leg 183 was designed to investigatethe origin and evolution of the large igneous province composedof the Kerguelen Plateau and Broken Ridge. Of the eight sitesdrilled, basalt was recovered from seven, five on the plateauand two on Broken Ridge. We present results from four of thesesites, 1136, 1138, 1141 and 1142. Although this large igneousprovince is interpreted as being derived from the Kerguelenmantle plume, the geochemical characteristics of basalt fromsome parts of the province indicate a role for continental lithosphere.The 118–119 Ma basalt flows recovered in the SouthernKerguelen Plateau (Site 1136) have a more subtle continentalsignature than shown by basalt at Leg 119 Site 738. A continentalsignature is absent in the 100–101 Ma tholeiitic basaltsat Site 1138 in the Central Kerguelen Plateau (CKP); their age-correctedNd–Sr–Pb isotopic values and incompatible elementratios are similar to those estimated for primitive mantle.These flows may represent a major mantle source in the Kerguelenstarting-plume head. The 20 basalt units identified are a productof magma chamber replenishment, fractional crystallization,and resorption of crystallizing phases. The topmost unit, Unit1, is a dacite that evolved from a basalt magma similar to thoserepresented by Units 3–22; unlike the basalts the dacitemagma was probably influenced by continental material. MiddleCretaceous (  相似文献   
8.
Submarine pyroclastic eruptions at depths greater than a few hundred meters are generally considered to be rare or absent because the pressure of the overlying water column is sufficient to suppress juvenile gas exsolution so that magmatic disruption and pyroclastic activity do not occur. Consideration of detailed models of the ascent and eruption of magma in a range of sea floor environments shows, however, that significant pyroclastic activity can occur even at depths in excess of 3000 m. In order to document and illustrate the full range of submarine eruption styles, we model several possible scenarios for the ascent and eruption of magma feeding submarine eruptions: (1) no gas exsolution; (2) gas exsolution but no magma disruption; (3) gas exsolution, magma disruption, and hawaiian-style fountaining; (4) volatile content builds up in the magma reservoir leading to hawaiian eruptions resulting from foam collapse; (5) magma volatile content insufficient to cause fragmentation normally but low rise speed results in strombolian activity; and (6) volatile content builds up in the top of a dike leading to vulcanian eruptions. We also examine the role of bulk-interaction steam explosivity and contact-surface steam explosivity as processes contributing to volcaniclastic formation in these environments. We concur with most earlier workers that for magma compositions typical of spreading centers and their vicinities, the most likely circumstance is the quiet effusion of magma with minor gas exsolution, and the production of somewhat vesicular pillow lavas or sheet flows, depending on effusion rate. The amounts by which magma would overshoot the vent in these types of eruptions would be insufficient to cause any magma disruption. The most likely mechanism of production of pyroclastic deposits in this environment is strombolian activity, due to the localized concentration of volatiles in magma that has a low rise rate; magmatic gas collects by bubble coalescence, and ascends in large isolated bubbles which disrupt the magma surface in the vent, producing localized blocks, bombs, and pyroclastic deposits. Another possible mode of occurrence of pyroclastic deposits results from vulcanian eruptions; these deposits, being characterized by the dominance of angular blocks of country rocks deposited in the vicinity of a crater, should be easily distinguishable from strombolian and hawaiian eruptions. However, we stress that a special case of the hawaiian eruption style is likely to occur in the submarine environment if magmatic gas buildup occurs in a magma reservoir by the upward drift of gas bubbles. In this case, a layer of foam will build up at the top of the reservoir in a sufficient concentration to exceed the volatile content necessary for disruption and hawaiian-style activity; the deposits and landforms are predicted to be somewhat different from those of a typical primary magmatic volatile-induced hawaiian eruption. Specifically, typical pyroclast sizes might be smaller; fountain heights may exceed those expected for the purely magmatic hawaiian case; cooling of descending pyroclasts would be more efficient, leading to different types of proximal deposits; and runout distances for density flows would be greater, potentially leading to submarine pyroclastic deposits surrounding vents out to distances of tens of meters to a kilometer. In addition, flows emerging after the evacuation of the foam layer would tend to be very depleted in volatiles, and thus extremely poor in vesicles relative to typical flows associated with hawaiian-style eruptions in the primary magmatic gas case. We examine several cases of reported submarine volcaniclastic deposits found at depths as great as 3000 m and conclude that submarine hawaiian and strombolian eruptions are much more common than previously suspected at mid-ocean ridges. Furthermore, the latter stages of development of volcanic edifices (seamounts) formed in submarine environments are excellent candidates for a wide range of submarine pyroclastic activity due not just to the effects of decreasing water depth, but also to: (1) the presence of a summit magma reservoir, which favors the buildup of magmatic foams (enhancing hawaiian-style activity) and episodic dike emplacement (which favors strombolian-style eruptions); and (2) the common occurrence of alkalic basalts, the CO2 contents of which favor submarine explosive eruptions at depths greater than tholeiitic basalts. These models and predictions can be tested with future sampling and analysis programs and we provide a checklist of key observations to help distinguish among the eruption styles.  相似文献   
9.
The geochemical reference material BHVO-1 was analysed by a variety of techniques over a six year period. These techniques included inductively coupled plasma-mass spectrometry and atomic emission spectroscopy (ICP-MS and ICP-AES, respectively), laser ablation ICP-MS and spark source mass spectroscopy. Inconsistencies between the published consensus values reported by Gladney and Roelandts (1988, Geostandards Newsletter) and the results of our study are noted for Rb, Y, Zr, Pb and Th. The values reported here for Rb, Y, Zr and Pb are generally lower, while Th is higher than the consensus value. This is not an analytical artefact unique to the University of Notre Dame ICP-MS facility, as most of the BHVO-1 analyses reported over the last ten to twenty years are in agreement with our results. We propose new consensus values for each of these elements as follows: Rb = 9.3 ± 0.2 μg g-1 (compared to 11 ± 2 μg g-1), Y = 24.4 ± 1.3 μg g-1 (compared to 27.6 ± 1.7 μg g-1), Zr = 172 ± 10 μg g-1 (compared to 179 ± 21 μg g-1), Pb = 2.2 ± 0.2 μg g-1 (compared to 2.6 ± 0.9 μg g-1) and Th = 1.22 ± 0.02 μg g-1 (compared to 1.08 ± 0.15 μg g-1).  相似文献   
10.
The oxidation kinetics of trithionate (S3O62- ) and tetrathionate (S4O 6 2- ) with hydroxyl radicals (OH*) have been investigated in systems analogous to acid mine drainage (AMD) environments. The discovery of hydroxyl radical (OH*) formation on pyrite surfaces (Borda et al., 2003) suggests hydroxyl radicals may affect the oxidation kinetics of intermediate sulfur species such as tetrathionate. Cyclic voltammetry experiments in acidic solutions indicate that the reaction of S4O 6 2- with OH* goes through an unknown intermediate, tentatively assigned as S3O 4 n- . An outer-sphere electron transfer mechanism for the reaction of S4O 6 2- with OH* to form S3O 4 n- is proposed based on experimental results. Oxidation rates for trithionate and tetrathionate in the presence of Fenton's reagent (which forms hydroxyl radicals) are too fast to be directly measured using UV-Vis spectrophotometry, electrochemical, or stop-flow spectrophotometry methods. Competitive reaction kinetics within the context of the Haber—Weiss mechanism suggests that the rate constant for the oxidation of trithionate and tetrathionate with OH* is in excess of 108 M-1 sec-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号