首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23811篇
  免费   259篇
  国内免费   130篇
测绘学   386篇
大气科学   1276篇
地球物理   4538篇
地质学   9260篇
海洋学   2342篇
天文学   5447篇
综合类   41篇
自然地理   910篇
  2022年   267篇
  2021年   438篇
  2020年   403篇
  2019年   473篇
  2018年   948篇
  2017年   879篇
  2016年   903篇
  2015年   385篇
  2014年   791篇
  2013年   1335篇
  2012年   920篇
  2011年   1145篇
  2010年   1081篇
  2009年   1256篇
  2008年   1075篇
  2007年   1253篇
  2006年   1102篇
  2005年   595篇
  2004年   566篇
  2003年   570篇
  2002年   595篇
  2001年   538篇
  2000年   432篇
  1999年   352篇
  1998年   339篇
  1997年   342篇
  1996年   270篇
  1995年   274篇
  1994年   253篇
  1993年   195篇
  1992年   215篇
  1991年   197篇
  1990年   207篇
  1989年   194篇
  1988年   168篇
  1987年   193篇
  1986年   175篇
  1985年   226篇
  1984年   215篇
  1983年   208篇
  1982年   198篇
  1981年   182篇
  1980年   165篇
  1979年   196篇
  1978年   164篇
  1977年   148篇
  1976年   138篇
  1975年   140篇
  1974年   130篇
  1973年   170篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
This work provides a comprehensive physically based framework for the interpretation of the north Australian rainfall stable isotope record (δ18O and δ2H). Until now, interpretations mainly relied on statistical relationships between rainfall amount and isotopic values on monthly timescales. Here, we use multiseason daily rainfall stable isotope and high resolution (10 min) ground‐based C‐band polarimetric radar data and show that the five weather types (monsoon regimes) that constitute the Australian wet season each have a characteristic isotope ratio. The data suggest that this is not only due to changes in regional rainfall amount during these regimes but, more importantly, is due to different rain and cloud types that are associated with the large scale circulation regimes. Negative (positive) isotope anomalies occurred when stratiform rainfall fractions were large (small) and the horizontal extent of raining areas were largest (smallest). Intense, yet isolated, convective conditions were associated with enriched isotope values whereas more depleted isotope values were observed when convection was widespread but less intense. This means that isotopic proxy records may record the frequency of which these typical wet season regimes occur. Positive anomalies in paleoclimatic records are most likely associated with periods where continental convection dominates and convection is sea‐breeze forced. Negative anomalies may be interpreted as periods when the monsoon trough is active, convection is of the oceanic type, less electric, and stratiform areas are wide spread. This connection between variability of rainfall isotope anomalies and the intrinsic properties of convection and its large‐scale environment has important implications for all fields of research that use rainfall stable isotopes.  相似文献   
3.
4.
5.
6.
Subglacial and subaqueous sediments deposited near the margin of a Late-glacial ice-dammed lake near Achnasheen, northern Scotland, are described and interpreted. The subglacial sediments consist of deformation tills and glacitectonites derived from pre-existing glaciolacustrine deposits, and the subaqueous sediments consist of ice-proximal outwash and sediment flow deposits, and distal turbidites. Sediment was delivered from the glacier to the lake by two main processes: (1) subglacial till deformation, which fed debris flows at the grounding line; and (2) meltwater transport, which fed sediment-gravity flows on prograding outwash fans. Beyond the ice-marginal environment, deposition was from turbidity currents, ice-rafting and settling of suspended sediments. The exposures support the conclusion that the presence of a subglacial deforming layer can exert an important influence on sedimentation at the grounding lines of calving glaciers.  相似文献   
7.
8.
9.
We examine a siphon-like mechanism for moving mass from the chromosphere to a gravitational well at the top of a magnetic loop to form a prominence. The calculations assume no apriori flow velocity at the loop base. Instead heating in the loop legs drives the flow. The prominence formation process requires two steps. First, the background heating rate must be reduced to on the order of 1 % of the initial heating rate required to maintain the coronal loop. This forms an initial condensation at the top of the loop. Second, the heating must take place only in the loop legs in order to produce a pressure differential which drives mass up into the well at the top of the loop. The heating rate in the loop must be increased once the prominence has begun to form or full prominence densities can not be achieved in a reasonable time. We conclude that this heating driven siphon-like mechanism is feasible for producing and maintaining prominences.  相似文献   
10.
New determination of the Earth orientation parameters (EOP), based on optical astrometry observations since the beginning of the century, is now under preparation by the Working group established by Commission 19 of the IAU. The Hipparcos catalog is to define the celestial reference frame in which the new series of EOP are to be described, The novelties of the prepared solution are the higher resolution (5 days) and more parameters estimated from the solution (celestial pole offsets, rheological parameters of the Earth, certain instrumental constants). The mathematical model of the solution is described, and the results based on the observations made with 46 instruments at 29 observatories and a preliminary Hipparcos catalog are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号