首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
地球物理   1篇
地质学   1篇
天文学   8篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2007年   1篇
  1998年   2篇
  1994年   4篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
2.
The characteristics of the line profile variations observed in optical transitions of O-type stars are reviewed. For a few well-observed stars, there is compelling evidence that the variations are due to photospheric velocity fields from one or more modes of nonradial pulsation. However, the origin of the line profile variations observed in most O stars is not yet established. To date, there is little empirical evidence to suggest that the variability in optical absorption lines of O stars is causally linked to the stellar wind variability commonly observed in their UV resonance lines.  相似文献   
3.
4.
We present the results from a 28-day IUE time-series campaign monitoring the stellar wind of the O5-type giant HD 93843. The principal aim was to study variability in the wind of a star with a normal projected rotation velocity. Systematic changes are identified, amidst continuous line-profile variability, in the absorption troughs of the Si  iv and N  v resonance lines. The patterns observed have characteristic time-scales of several days and are mimicked by fluctuations (of several 100 km s−1) in the blue wings of the saturated C  iv P Cygni profile.   Fourier analysis provides support for the repeatability of wind structures in HD 93843 on a 7.1-d 'period'. Power at this frequency is evident only at intermediate and high velocities (i.e., above ∼0.3 of the terminal velocity). The long modulation time-scale suggests that changes in the star itself probably provide the physical source for triggering the onset of wind structure. Unfortunately the rotational, photometric, pulsational and magnetic properties of HD 93843 are too poorly constrained or known to permit a more detailed interpretation of the 7.1-d wind modulation in terms of potential inhomogeneities at the stellar surface. Nevertheless, our study demonstrates that the incidence of cyclic, possibly regular, stellar-wind variability is not restricted to rapid rotators. Comparisons with other OB stars which have exhibited repetitive wind changes on 'periods' of several days suggest that the time-dependent UV properties of HD 93843 are more akin to those of the O4-type supergiant ζ Puppis.  相似文献   
5.
Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and levelling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature vs distance) for 53 rivers in the Pacific Northwest (USA) using an extensive data set of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Turbidity is an important habitat component in estuaries for many fishes and affects a range of other ecological functions. Decadal timescale declines in turbidity have been observed in the San Francisco Estuary (Estuary), with the declines generally attributed to a reduction in sediment supply to the Estuary and changes to the erodible sediment pool in the Estuary. However, we analyzed hourly wind data from 1995 through 2015 and found statistically significant declines of 13 to 48% in wind speed around the Estuary. This study applied a 3-D hydrodynamic, wave, and sediment transport model to evaluate the effects of the observed decrease in wind speed on turbidity in the Estuary. The reduction in wind speed over the past 20 years was predicted to result in a decrease in turbidity of 14 to 55% in Suisun Bay from October through January. These results highlight that the observed declines in both wind speed and sediment supply over the past 20 years have resulted in reduced turbidity in the San Francisco Estuary from October through January. This decline in turbidity in Suisun Bay potentially has negative effects on habitat for fish like the endangered Delta Smelt which are more commonly caught in relatively turbid water.  相似文献   
7.
Important insights into the formation, structure, evolution and environment of all types of stars can be obtained through the measurement of their winds and possible magnetospheres. However, this has hardly been done up to now mainly because of the lack of UV instrumentation available for long periods of time. To reach this aim, we have designed UVMag, an M-size space mission equipped with a high-resolution spectropolarimeter working in the UV and visible spectral range. The UV domain is crucial in stellar physics as it is very rich in atomic and molecular lines and contains most of the flux of hot stars. Moreover, covering the UV and visible spectral domains at the same time will allow us to study the star and its environment simultaneously. Adding polarimetric power to the spectrograph will multiply tenfold the capabilities of extracting information on stellar magnetospheres, winds, disks, and magnetic fields. Examples of science objectives that can be reached with UVMag are presented for pre-main sequence, main sequence and evolved stars. They will cast new light onto stellar physics by addressing many exciting and important questions. UVMag is currently undergoing a Research & Technology study and will be proposed at the forthcoming ESA call for M-size missions. This spectropolarimeter could also be installed on a large UV and visible observatory (e.g. NASA’s LUVOIR project) within a suite of instruments.  相似文献   
8.
On the basis of a a careful analysis of resonance line formation (both for singlets and doublets) in structured winds, presenttime dependent models of the line driven winds of hot stars (Owocki et al., this volume; Feldmeier, this volume) are shown to be able to explain a number of observational features with respect to variability and structure: they are (in principle) able to reproduce theblack andbroad troughs (without any artificial turbulence velocity) and the blue edge variability observed in saturated resonance lines; they might explain the long lived narrow absorption components often observed in unsaturated lines at high velocities; they predict a relation between the edge velocity of UV-lines and the radiation temperature of the observed X-ray emission.As a first example of the extent to which theoretical models can be constrained by comparisons between observations and profiles calculated by spectrum synthesis from structured winds, we show here that models with deep-seated onset of structure formation ( 1.1R * ) produce resonance lines which agreequalitatively with observational findings; in contrast, the here presented models with structure formation only well out in the wind ( 1.6R * ) fail in this respect.  相似文献   
9.
We present a 1-D dynamical model of large-scale flow structures induced in a hot-star wind by an initial density perturbation in the inner wind. The resulting wind response is very complex, but includes strong density enhancements that propagate slowly outward through the wind. These density structures exhibit a very slow outward acceleration reminiscent of the discrete absorption components frequently observed in unsaturated UV lines formed in hot-star winds.  相似文献   
10.
We report on the presence of substantial, low-velocity stellar wind structure in the extreme O supergiant HD 152408, based on optical spectroscopic time-series observations. Systematic variations in the form of migrating optical depth enhancements occur in the absorption trough of the He I 5876 P Cygni profile. These variations start deep in the stellar wind, slowly accelerate bluewards to 0.5v over 1–2 days, and recur at intervals of about 1 day. Sympathetic variations are apparent in the Balmer emission lines. The observations provide constraints on the stability of the low-velocity stellar wind regime, and indicate the presence of large-amplitude perturbations at great depths in the outflow.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号