首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
大气科学   2篇
地球物理   3篇
地质学   4篇
天文学   3篇
  2018年   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1993年   2篇
  1990年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Submarine groundwater discharge (SGD) was quantified at select sites in San Francisco Bay (SFB) from radium (223Ra and 224Ra) and radon (222Rn) activities measured in groundwater and surface water using simple mass balance box models. Based on these models, discharge rates in South and Central Bays were 0.3?C7.4?m3?day?1?m?1. Although SGD fluxes at the two regions (Central and South Bays) of SFB were of the same order of magnitude, the dissolved inorganic nitrogen (DIN) species associated with SGD were different. In the South Bay, ammonium (NH 4 + ) concentrations in groundwater were three-fold higher than in open bay waters, and NH 4 + was the primary DIN form discharged by SGD. At the Central Bay site, the primary DIN form in groundwater and associated discharge was nitrate (NO 3 ? ). The stable isotope signatures (??15NNO3 and ??18ONO3) of NO 3 ? in the South Bay groundwater and surface waters were both consistent with NO 3 ? derived from NH 4 + that was isotopically enriched in 15N by NH 4 + volatilization. Based on the calculated SGD fluxes and groundwater nutrient concentrations, nutrient fluxes associated with SGD can account for up to 16?% of DIN and 22?% of DIP in South and Central Bays. The form of DIN contributed to surface waters from SGD may impact the ratio of NO 3 ? to NH 4 + available to phytoplankton with implications to bay productivity, phytoplankton species distribution, and nutrient uptake rates. This assessment of nutrient delivery via groundwater discharge in SFB may provide vital information for future bay ecological wellbeing and sensitivity to future environmental stressors.  相似文献   
2.
The effect of a propagating shock on the Hi L line and the polarization brightness in the inner solar wind region is investigated. We find that the shock produces measurable changes in both and, provided the measurements are made simultaneously, the alteration of the density and velocity across the shock can be derived. For a standing shock the effect on the L line and the white-light radiation is much smaller.  相似文献   
3.
A high resolution global model of the terrestrial biosphere is developed to estimate changes in nitrous oxide (N2O) emissions from 1860–1990. The model is driven by four anthropogenic perturbations, including land use change and nitrogen inputs from fertilizer, livestock manure, and atmospheric deposition of fossil fuel NO x . Global soil nitrogen mineralization, volatilization, and leaching fluxes are estimated by the model and converted to N2O emissions based on broad assumptions about their associated N2O yields. From 1860–1990, global N2O emissions associated with soil nitrogen mineralization are estimated to have decreased slightly from 5.9 to 5.7 Tg N/yr, due mainly to land clearing, while N2O emissions associated with volatilization and leaching of excess mineral nitrogen are estimated to have increased sharply from 0.45 to 3.3 Tg N/yr, due to all four anthropogenic perturbations. Taking into account the impact of each perturbation on soil nitrogen mineralization and on volatilization and leaching of excess mineral nitrogen, global 1990 N2O emissions of 1.4, 0.7, 0.4 and 0.08 Tg N/yr are attributed to fertilizer, livestock manure, land clearing and atmospheric deposition of fossil fuel NO x , respectively. Consideration of both the short and long-term fates of fertilizer nitrogen indicates that the N2O/fertilizer-N yield may be 2% or more.C. NBM Definitions AET mon (cm H2O) = monthly actual evapotranspiration - AET ann (cm H2O) = annual actual evapotranspiration - age h (years) = stand age of herbaceous biomass - age w (years) = stand age of woody biomass - atmblc (gC/m2/month) = net flux of CO2 from grid - biotoc (gC/g biomass) = 0.50 = convert g biomass to g C - beff h = 0.8 = fraction of cleared herbaceous litter that is burned - beff w = 0.4 = fraction of cleared woody litter that is burned - bfmin = 0.5 = fraction of burned N litter that is mineralized or converted to reactive gases which rapidly redeposit. Remainder assumed pyrodenitrified to N2. + N2O - bprob = probability that burned litter will be burned - burn h (gC/m2/month) = herbaceous litter burned after land clearing - burn w (gC/m2/month) = woody litter burned after land clearing - cbiomsh (gC/m2) = C herbaceous biomass pool - cbiomsw (gC/m2) = C woody biomass pool - clear (gC/m2/month) = woody litter C removed by land clearing - clearn (gN/m2/month) = woody litter N removed by land clearing - cldh (month–1) = herbaceous litter decomposition coefficient - cldw (month–1) = woody litter decomposition coefficient - clittrh (gC/m2) = C herbaceous litter pool - clittrw (gC/m2) = C woody litter pool - clph (month–1) = herbaceous litter production coefficient - clpw (month–1) = woody litter production coefficient - cnrath (gC/gN) = C/N ratio in herbaceous phytomass - cnrats (gC/gN) = C/N ratio in soil organic matter - cnratt (gC/gN) = average C/N ratio in total phytomass - cnratw (gC/gN) = C/N ratio in woody phytomass - crod (month–1) = forest clearing coefficient - csocd (month–1) = actual soil organic matter decompostion coefficient - decmult decomposition coefficient multiplier; natural =1.0; agricultural =1.0 (1.2 in sensitivity test) - fertmin (gN/m2/month) = inorganic fertilizer input - fleach fraction of excess inorganic N that is leached - fligh (g Lignin/ g C) = lignin fraction of herbaceous litter C - fligw (g Lignin/ g C) = 0.3 = lignin fraction of woody litter C - fln2o = .01–.02 = fraction of leached N emitted as N2O - fnav = 0.95 = fraction of mineral N available to plants - fosdep (gN/m2/month) = wet and dry atmospheric deposition of fossil fuel NO x - fresph = 0.5 = fraction of herbaceous litter decomposition that goes to CO2 respiration - fresps = 0.51 + .068 * sand = fraction of soil organic matter decomposition that goes to CO2 respiration - frespw = 0.3 * (* see comments in Section 2.3 under decomposition) = fraction of woody litter decomposition that goes to CO2 respiration - fsoil = ratio of NPP measured on given FAO soil type to NPFmiami - fstruct = 0.15 + 0.018 * ligton = fraction of herbaceous litter going to structural/woody pool - fvn2o = .05–.10 = fraction of excess volatilized mineral N emitted as N2O - fvol = .02 = fraction of gross mineralization flux and excess mineral N volatilized - fyield ratio of total agricultural NPP in a given country in 1980 to total NPPmiami of all displaced natural grids in that country - gimmob h (gN/m2/month) = gross immobilization of inorganic N into microbial biomass due to decomposition of herbaceous litter - gimmob s (gN/m2/month) = gross immobilization of inorganic N into microbial biomass due to decomposition of soil organic matter - gimmob w (gN/m2/month) = gross immobilization of inorganic N into microbial biomass due to decomposition of woody litter - graze (gC/m2/month) = C herbaceous biomass grazed by livestock - grazen (gN/m2/month) = N herbaceous biomass grazed by livestock - growth h (gC/m2/month) = herbaceous litter incorporated into microbial biomass - growth w (gC/m2/month) = woody litter incorporated into microbial biomass - gromin h (gN/m2/month) = gross N mineralization due to decomposition and burning of herbaceous litter - gromin s (gN/m2/month) = gross N mineralization due to decomposition of soil organic matter - gromin w (gN/m2/month) = gross N mineralization due to decomposition and burning of woody litter - herb herbaceous fraction by weight of total biomass - leach (gN/m2/month) = leaching (& volatilization) losses of excess inorganic N - ligton (g lignin-C/gN) = lignin/N ratio in fresh herbaceous litter - LP h (gC/m2/month)= C herbaceous litter production - LP (gC/m2/month) = C woody litter production - LPN h (gN/m2/month) = N herbaceous litter production - LPN W (gN/m2/month) = N woody litter production - manco2 (gC/m2/month) = grazed C respired by livestock - manlit (gC/m2/month) = C manure input (feces + urine) - n2oint (gN/m2/month) = intercept of N2O flux vs gromin regression - n2oleach (gN/m2/month) = N2O flux associated with leaching and volatilization of excess inorganic N - n2onat (gN/m2/month) = natural N2O flux from soils - n2oslope slope of N2O flux vs gromin regression - nbiomsh (gN/m2) = N herbaceous biomass pool - nbiomsw (gN/m2) = N woody biomass pool - nfix (gN/m2/month) = N2 fixation + natural atmospheric deposition - nlittrh (gN/m2) = N herbaceous litter pool - nlittrw (gN/m2) = N woody litter pool - nmanlit (gN/m2/month) = organic N manure input (feces) - nmanmin (gN/m2/month) = inorganic N manure input (urine) - nmin (gN/m2) = inorganic N pool - NPP acth (gC/m2/month)= actual herbaceous net primary productivity - NPP actw (gC/m2/month) = actual woody net primary productivity - nvol (gN/m2/month) = volatilization losses from inorganic N pool - plntnav (gN/m2/month)= mineral N available to plants - plntup h (gN/m2/month) = inorganic N incorporated into herbaceous biomass - plntup w (gN/m2/month) = inorganic N incorporated into woody biomass - precip ann (mm) = mean annual precipitation - precip mon (mm) = mean monthly precipitation - pyroden h (gN/m2/month) = burned herbaceous litter N that is pyrodenitrified to N2 - pyroden w (gN/m2/month) = burned woody litter N that is pyrodenitrified to N2 - recyc fraction of N that is retranslocated before senescence - resp h (gC/m2/month) = herbaceous litter CO2 respiration - resp s (gC/m2/month) = soil organic carbon CO2 respiration - resp w (gC/m2/month) = woody litter CO2 respiration - sand sand fraction of soil - satrat ratio of maximum NPP to N-limited NPP - soiloc (gC/m2) = soil organic C pool - soilon (gN/m2) = soil organic N pool - temp ann (°C) = mean annual temperature - temp mon (°C) = mean monthly temperature Now at the NOAA Aeronomy Laboratory, Boulder, Colorado.  相似文献   
4.
It is shown that relatively small errors of the order of 10% in the electron densities, for example derived from polarization brightness measurements, might lead to large errors in the velocities inferred from intensity measurements of the L Hi 1216 spectral line in the inner corona. It is demonstrated that in some cases this effect can result in very high velocities close to the coronal base with subsequent small acceleration with heliocentric distance. It is also pointed out that the errors in the deduced velocities can be reduced if simultaneous observations that place constraints on the mass flux are available, and by ensuring that the mass flux computed from the derived velocities and densities is constant.  相似文献   
5.
6.
We present new results on the recently discovered 69 ms X-ray pulsar AXS J161730-505505, the sixth youngest example of a rotation-powered pulsar. We have undertaken a comprehensive X-ray-observing campaign of AXS J161730-505505 with the ASCA, BeppoSAX, and RXTE observatories and follow its long-term spin-down history between 1989 and 1999 using these observations and archival Ginga and ASCA data sets. The spin-down is not simply described by a linear function as originally thought, but instead we find evidence of a giant glitch (DeltaP&solm0;P greater, similar10-6) between 1993 August and 1997 September, perhaps the largest yet observed from a young pulsar. The glitch is well described by steps in P and P&d2; accompanied by a persistent P&d3; similar to those seen in the Vela pulsar. The pulse profile of AXS J161730-505505 presents a single asymmetric peak that is maintained over all observation epochs. The energy spectrum is also steady over time, characterized by a highly absorbed power law with a photon index Gamma=1.4+/-0.2, consistent with that found for other young rotation powered pulsars.  相似文献   
7.
Identifying aquifer vulnerability to climate change is of vital importance in the Sierra Nevada and other snow‐dominated basins where groundwater systems are essential to water supply and ecosystem health. Quantifying the component of new (current year's) snowmelt in groundwater and surface water is useful in evaluating aquifer vulnerability because significant annual recharge may indicate that streamflow will respond rapidly to annual variability in precipitation, followed by more gradual decreases in recharge as recharge declines over decades. Hydrologic models and field‐based studies have indicated that young (<1 year) water is an important component of streamflow. The goal of this study was to utilize the short‐lived, naturally occurring cosmogenic isotope sulfur‐35 (35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the Tertiary volcanics of the central Sierra Nevada, CA. Activities of 35S were measured in dissolved sulfate (35SO42?) in SCB and MVGB snowpack, groundwater, springs, and streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 6.6% during baseflow conditions to 14.0 ± 3.4% during high‐flow periods of snowmelt. Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with the largest fractions occurring in late spring or early summer following peak streamflow. The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB and MVGB recharges groundwater, and groundwater contributions to streamflow in these systems have the potential to mitigate climate change impacts on runoff.  相似文献   
8.
Stable isotope data, a dissolved gas tracer study, groundwater age dating, and geochemical modeling were used to identify and characterize the effects of introducing low-TDS recharge water in a shallow aerobic aquifer affected by a managed aquifer recharge project in California’s San Joaquin Valley. The data all consistently point to a substantial degree of mixing of recharge water from surface ponds with ambient groundwater in a number of nearby wells screened at depths above 60 m below ground surface. Groundwater age data indicate that the wells near the recharge ponds sample recently recharged water, as delineated by stable O and C isotope data as well as total dissolved solids, in addition to much older groundwater in various mixing proportions. Where the recharge water signature is present, the specific geochemical interactions between the recharge water and the aquifer material appear to include ion exchange reactions (comparative enrichment of affected groundwater with Na and K at the expense of Ca and Mg) and the desorption of oxyanion-forming trace elements (As, V, and Mo), possibly in response to the elevated pH of the recharge water.  相似文献   
9.
We assess the appropriateness of using regression- and process-based approaches for predicting biogeochemical responses of ecosystems to global change. We applied a regression-based model, the Osnabruck Model (OBM), and a process-based model, the Terrestrial Ecosystem Model (TEM), to the historical range of temperate forests in North America in a factorial experiment with three levels of temperature (+0 °C, +2 °C, and +5 °C) and two levels of CO2 (350 ppmv and 700 ppmv) at a spatial resolution of 0.5° latitude by 0.5° longitude. For contemporary climate (+0 °C, 350 ppmv), OBM and TEM estimate the total net primary productivity (NPP) for temperate forests in North America to be 2.250 and 2.602 × 1015 g C ? yr?1, respectively. Although the continental predictions for contemporary climate are similar, the responses of NPP to altered climates qualitatively differ; at +0 °C and 700 ppmv CO2, OBM and TEM predict median increases in NPP of 12.5% and 2.5%, respectively. The response of NPP to elevated temperature agrees most between the models in northern areas of moist temperate forest, but disagrees in southern areas and in regions of dry temperate forest. In all regions, the response to CO2 is qualitatively different between the models. These differences occur, in part, because TEM includes known feedbacks between temperature and ecosystem processes that affect N availability, photosynthesis, respiration, and soil moisture. Also, it may not be appropriate to extrapolate regression-based models for climatic conditions that are not now experienced by ecosystems. The results of this study suggest that the process-based approach is able to progress beyond the limitations of the regression-based approach for predicting biogeochemical responses to global change.  相似文献   
10.
Groundwater is not a sustainable resource, unless abstraction is balanced by recharge. Identifying the sources of recharge in a groundwater basin is critical for sustainable groundwater management. We studied the importance of river water recharge to groundwater in the south‐eastern San Joaquin Valley (24,000 km2, population 4 million). We combined dissolved noble gas concentrations, stable isotopes, tritium, and carbon‐14 analyses to analyse the sources, mechanisms, and timescales of groundwater recharge. Area‐representative groundwater sampling and numerical model input data enabled a stable isotope mass balance and quantitative estimates of river and local recharge. River recharge, identified by a lighter stable isotope signature, represents 47 ± 4% of modern groundwater in the San Joaquin Valley (recharged after 1950) but only 26 ± 4% of premodern groundwater (recharged before 1950). This implies that the importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a 40% increase in total recharge, caused by river water irrigation return flows and increased stream depletion and river recharge due to groundwater pumping. Compared with the large and long‐duration capacity for water storage in the subsurface, storage of water in rivers is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast infiltration and recharge. Groundwater banking of seasonal surface water flows and expansion of managed aquifer recharge practices therefore appear to be a natural and promising method for increasing the resilience of the San Joaquin Valley water supply system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号