首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
大气科学   3篇
地球物理   3篇
地质学   12篇
海洋学   3篇
天文学   8篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   1篇
  2003年   2篇
  2001年   1篇
  1992年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
Izvestiya, Atmospheric and Oceanic Physics - The phase shift between changes in the global surface temperature Tg and atmospheric CO2 content $${{q}_{{{\text{C}}{{{\text{O}}}_{2}}}}}$$ has been...  相似文献   
2.
A mathematical model is constructed for the motion of an electromagnetic pulse used in laser ranging of the OZIRIS spacecraft. A formula is derived for the calculation of corrections to the distance of the spacecraft associated with the non-inertial motion of the laser station and the influence of the gravitational field of the Earth on the laser pulses. It is shown that these corrections must be taken into account when carrying out precision laser ranging of the spacecraft with the goal of distance determination to within 20 cm or better.  相似文献   
3.
Based on X-ray, gamma-ray, and charged-particle measurements with several instruments onboard the Coronas-F satellite and on ACE and GOES experimental data presented on the Internet, we investigate the parameters of the solar flare of November 4, 2001, and the energetic-particle fluxes produced by it in circumterrestrial space. The increase in relativistic-electron fluxes for about 1.5 days points to a moving source (shock front). The structure of the energetic-particles fluxes in the second half of November 5, 2001, can be explained by the passage of the coronal mass ejection that was ejected on November 1, 2001, and that interacted with the shock wave from the flare of November 4, 2001.  相似文献   
4.
5.
The results of an experimental study of the variations in the intensity of the fluxes of the Earth radiation belt (ERB) particles in 0.3–6 and 1–50 MeV energy intervals for electrons and protons, respectively, are reported. ERBs were studied during strong magnetic storms from August 2001 through November 2003. The results of the CORONAS-F mission obtained during the magnetic storms of November 6 (D st = ?257 nT) and November 24, 2001 (D st = ?221 nT), October 29–30 (D st = ?400 nT) and November 20, 2003 (D st = ?465 nT) are analyzed. The electron flux is found to decrease abruptly in the outer radiation belt during the main phase of the magnetic storms under consideration. During the recovery phase, the outer radiation belt is found to recover much closer to Earth, near the boundary of the penetration of solar electrons during the main phase of the magnetic storm. We associate the decrease in the electron flux with the abrupt decrease of the size of the magnetosphere during the main phase of the storm. Note that, in all cases studied, the Earth radiation belts exhibited rather long (several days) variations. In those cases where solar cosmic-ray fluxes were observed during the storm, protons with energies 1–5 MeV could be trapped to form an additional maximum of protons with such energies at L >2.  相似文献   
6.
A method of computation of maximum discharges caused by rainfalls fallen onto small catchments is presented. This method is based on usage of the catchments’ hydrometeorological parameters, soil properties and observed characteristics of rainfalls.  相似文献   
7.
This paper considers the impact of current climatic change on the permafrost strength and stability of relic gas hydrates in the Yamal Peninsula based on the results of permafrost thermal regime simulations and model estimates of climate change within last 100 ka.  相似文献   
8.
The study of variations in the electron flux in the outer Earth radiation belt (ERB) and their correlations with solar processes is one of the important problems in the experiment with the Electron-M-Peska instrument onboard the CORONAS-Photon solar observatory. Data on relativistic and subrelativistic electron fluxes obtained by the Electron-M-Peska in 2009 have been used to study the outer ERB dynamics at the solar minimum. Increases in outer ERB relativistic electron fluxes, observed at an height of 550 km after weak magnetic disturbances induced by high-velocity solar wind arriving to the Earth, have been analyzed. The geomagnetic disturbances induced by the high-velocity solar wind and that resulted in electron flux variations were insignificant: there were no considerable storms and substorms during that period; however, several polar ground-based stations observed an increase in wave activity. An assumption has been made that the wave activity caused the variations in relativistic electron fluxes.  相似文献   
9.
10.
Carried out are numerical experiments with the IAP RAS global climate model (IAP RAS CM) under new RCP scenarios of anthropogenic impact for the 18th–21st centuries taking account of the response of the methane emission from the soil to the atmosphere and effects of chemical processes in the atmosphere on the climate changes. The model generally simulates the preindustrial and present-day characteristics of the methane cycle. Methane emissions from the soil to the atmosphere (within the range of 150–160 Mt CH4/year for the present-day period) reach 170–230 Mt CH4/year by the late 21st century depending on the scenario of anthropogenic impact. The methane concentration under the most aggressive RCP 8.5 anthropogenic scenario increases up to 3900 ppb by the late 21st century. Under more moderate RCP 4.5 and 6.0 anthropogenic scenarios, it reaches 1850–1980 ppb in the second half of the 21st century and decreases afterwards. Under RCP 2.6 scenario, the methane concentration maximum of 1730 ppb in the atmosphere is reached in the second decade of the 21st century. The taking account of the interaction between the processes in the soils and the climate leads to the additional increase in the methane content in the atmosphere by 10–25% in the 21st century depending on the scenario of anthropogenic impact. The taking account of the methane oxidation in the atmosphere in the case of warming reduces the increase in its concentration by 5–40%. The associated changes in the surface air temperature turn out to be small (less than 0.1 K globally or 4% of the warming expected by the late 21st century).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号