首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   1篇
测绘学   4篇
地质学   2篇
海洋学   1篇
天文学   12篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
In January of 1982 we measured a microwave spectrum of CO in the Martian atmosphere utilizing the rotational J = 1 → 2 transition of CO. We have analyzed data and reanalyzed the microwave spectra of R. K. Kakar, J. W. Waters, and W. J. Wilson, (Science196, 1090–1091, 1977, measured in 1975) and J. C. Good and F. P. Schloerb, (Icarus47, 166–172, 1981 measured in 1980) in order to constrain estimates of the temporal variability of CO abundance in the Martian atmosphere. Our values of CO column density from the data of Karar et al., Good and Schloerb, and our own are 1.7 ± 0.9 × 1020, 3.0 ± 1.0 × 1020, and 4.6 ± 2.0 × 1020cm?2, respectively. The most recent estimate of CO column density from the 1967 infrared spectra of J. Connes, P. Connes, and J.P. Maillard, (Atlas de Spectres Infarouges de Venus, Mars, Jupiter, et Saturne, Editions due Centre National de la Recherche Scientifique, Paris, 1969), is 2.0 ± 0.8 × 1020 cm?2 (L.D.G. Young and A.T. Young, Icarus30, 75–79, 1977). The large uncertainties given for the microwave measurements are due primarily to uncertainty in the difference between the continuum brightness temperature and atmospheric temperatures of Mars. We have accurately calculated the variation among the observations of the continuum (surface) brightness temperature of Mars, which is primaroly a function of the observed aspect of Mars. A more difficult problem to consider is variability of global atmospheric temperatures among the observations, particularly the effects of global dust storms and the ellipticity of the orbit of Mars. The large bars accompanying our estimates of CO column density from the three sets of microwave measurements are primarily caused by an assumed uncertainty of ±10°K in our atmospheric temperature model due to possible dust in the atmosphere. A qualitative consideration of seasonal variability of global atmospheric temperatures among the measurements suggests that there is not strong evidence for variability of the column abundance of CO on Mars, although variability of 0–100% over a time scale of several years is allowed by the data set. The implication for the variability of Mars O2 is, crudely, a factor of two less. We found that the altitude distribution of CO in the atmosphere of Mars was not well constrained by any of the spectra, although our spectrum was marginally better fitted by an altitude increasing profile of CO mixing ratios.  相似文献   
2.
We present aperture synthesis maps of the Saturn system at a wavelength of 3.71 cm. The data used to make the maps were obtained in May–June 1976 at the Owens Valley Radio Observatory on 13 interferometer baselines. The aperture synthesis maps contain few assumptions about the brightness structure of Saturn and the rings and, therefore, may be used to check previous model-fitting results as well as search for new unmodeled features. Generally, the maps confirm the previous model-fitting results. An exception to this is that the brightness temperature of the planet that is implied by the maps is about 4% less than that deduced from model fitting. The likely explanation of this discrepancy is that random errors on the phase of the visibility function have led to an underestimate of the planet brightness temperature in the map. Maps of the residuals to the model fits have shown that the position of Saturn given in the American Ephemeris and Nautical Almanac may be in error by about 0.25 arcsec. Maps of the residuals to model fits including a position offset show that no new features of the Saturn brightness structure are required to match the present data. In particular, no azimuthal variations in the brightness temperature of the rings were detected.  相似文献   
3.
We present interferometric observations of Saturn and its ring system made at the Hat Creek Radio Astronomy Observatory at a wavelength of 1.30 cm. The data have been analyzed by both model-fitting and aperture synthesis techniques to determine the brightness temperature and optical thickness of the ring system and estimate the amount of planetary limb darkening. We find that the ring optical depth is close to that observed at visible wavelenghts, while the ring brightness temperature is only 7 ± 1°K. These observational constraints require the ring particles to be nearly conservative scatterers at this wavelength. A conservative lower limit to the single-scattering albedo of the particles at 1.30-cm wavelength is 0.95, and if their composition is assumed to be water ice, then this lower limit implies an upper limit of 2.4 m for the radius of a typical ring particle. The aperture synthesis maps show evidence for a small offset in the position of Saturn from that given in the American Ephemeris and Nautical Almanac. The direction and magnitude of this offset are consistent with that found from a similar analysis of 3.71-cm interferometric data which we have previously presented (F.P. Schloerb, D.O. Muhleman, and G.L. Berge, 1979b, Icarus39, 232–250). Limb darkening of the planetary disk has been estimated by solving for the best-fitting disk radius in the models. The best-fitting radius is 0.998 ± 0.004 times the nominal Saturn radius and indicates that the planet is not appreciably limb dark at 1.30 cm. Since our previous 3.71-cm data also indicated that the planet was not strongly limb dark (F.P. Schloerb, D. O. Muhleman, and G.L. Berge, 1979a, Icarus39, 214–230), we feel that the limb darkening is not strongly wavelength dependent between 1.30 and 3.71 cm. The difference between the best-fitting disk radii at 3.71 and 1.30 cm is +0.007 ± 0.007 times the nominal Saturn radius and suggests that the planet is more limb dark at 1.30 cm than at 3.71 cm. Models of the atmosphere which have NH3 as the principal source of microwave opacity predict that the planet will be less limb dark at 1.30 cm. However, the magnitude of the effect predicted by the NH3 models is ?0.009 and only marginally different from the observed value.  相似文献   
4.
Interferometric observations of Saturn and its rings made at the Owens Valley Radio Observatory at a wavelength of 3.71 cm ar fit to models of the Saturn brightness structure. The models have allowed us to estimate the brightness temperatures and optical thicknesses of the A, B, and C rings as well as the brightness temperature of the planetary disk. The most accurate results are the ratios of the ring temperatures to the planet temperature of 0.030 ± 0.012, 0.050 ± 0.010, and 0.040 ± 0.014 for the A, B, and C rings, respectively. The best estimates of the ring optical thicknesses are τA = 0.2 ± 0.1, τB = 0.9 ± 0.2, and τC = 0.1 ± 0.1. The actual brightness temperatures, which are affected by the absolute calibration errors, are Tplanet = 178 ± 8, TA = 5.2 ± 2.0, TB = 9.1 ± 1.8, and TC = 7.1 ± 2.6°K. The particle single-scattering albedo that would be most consistent with the observations is slightly less than one, but probably greater than 0.95. The observations are consistent with particles which conservatively scatter the thermal emission from Saturn to the Earth and emit no thermal emission of their own. The 3.71-cm optical depths which we have estimated are very close to the visible wavelength optical depths. This similarity indicates that the ring particles must be at least a few centimeters in size, although we feel that the particles may well be much larger than this in view of the closeness of the visible and microwave optical depths. Particles which are nearly conservative scatterers at our wavelength and at least a few centimeters in size must be composed of a material which is either a very good reflector of microwaves or a very poor absorber of them. At this time, water ice seems to be the most likely candidate since it is a very poor absorber of microwaves and has been detected in the rings spectroscopically.  相似文献   
5.
The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan.  相似文献   
6.
Two recent papers, one by A.J. Kliore, C. Elachi, I.R. Patel, and J.B. Cimeno, Icarus37, 51-2- 72, 1979, and one by B. Lipa and G.L. Tyler, Icarus39, 192–208, 1979, reach fundamentally different conclusions concerning microwave absorption in the atmosphere of Venus, even though they are based on the same Mariner 10 radio occultation data. The Lipa and Tyler results are in general agreement with earlier Mariner 5 measurements analyzed by G. Fjeldbo, A.J. Kliore, and V.R. Eshleman, Astron. J.76, 123–140, 1971. We find that in the Kliore et al. treatment: (1) the effects of measurements and analysis uncertainties in the derived values of absorption are underestimated; (2) an incorrect formula is used for computation of the refractive effects needed to determine the absorption; (3) detailed features of a derived profile of absorption would have been created in an optically thin region by known motions of the spacecraft antenna, if its axial direction were biased about 0.5° from the computed directions; and (4) this particular angular bias is consistent with other available information about an apparent residual difference between true and reconstructed antenna pointing directions. We conclude that: (1) there is no credible evidence for measurable microwave absorption in the atmosphere of Venus at heights greater than 55 km for any of the wavelengths that have been used in radio occultation experiments, even though Kliore et al. indicate that there are significant amounts up to at least 70 km for both Mariner 10 wavelengths (13 and 3.6 cm); (2) absorption in the region 35 to 50 km has been reasonably well determined from the two concordant Mariner 5 and 10 analyses, but only at one wavelength (13 cm); and (3) improved instrumentation and careful planning and analysis will be required for the radio occultation technique to realize its potential for the study of absorbing regions in the atmospheres of Venus and the major planets.  相似文献   
7.
In May of 2007, a study was initiated by the National Institute of Oceanography (NIO), Goa, India, to investigate the influence of monsoonal rainfall on hydrographic conditions in the Mandovi River of India. The study was undertaken at a location ∼2 km upstream of the mouth of this estuary. During the premonsoon (PreM) in May, when circulation in the estuary was dominated by tidal activity, phytoplankton communities in the high saline (35–37 psu) waters at the study site were largely made up of the coastal neritic species Fragilaria oceanica, Ditylum brightwellii and Trichodesmium erythraeum. During the later part of the intermonsoon (InterM) phase, an abrupt decline in salinity led to a surge in phytoplankton biomass (Chlorophyll a ∼14 mg m − 3), of a population that was dominated by Thalassiosira eccentricus. As the southwest monsoon (SWM) progressed and the estuary freshened salinity and Chlorophyll a (Chl a) concentrations decreased during the MoN, Skeletonema costatum established itself as the dominant form. Despite the low biomass (Chl a <2 mg m − 3), the phytoplankton community of the MoN was the most diverse of the entire study. During the postmonsoon (PostM), the increase in salinity was marked by a surge in dinoflagellate populations comprising of Ceratium furca, Akashiwo sanguinea, and Pyrophacus horologium.  相似文献   
8.
提出了多光谱图像像元特征矢量之间的极小互相关系数,极大互相关系数及互相关差值和相关密度的概念,在对模拟图像进行矢量相关分析及其对边缘提取的有效性分析基础上,提出对多光谱图像采取像元特征矢量相关分析并提取边缘信息的方法,对TM图像进行试验分析的结果说明了此方法的有效性。  相似文献   
9.
以对武汉大学通识课“电子地图设计”建设为背景,分析了综合性大学中通识课程的建设理念和途径,重点总结了多媒体情境教学方法在课程全环节的运用,对于多学科背景的受众取得了良好的教学效果。  相似文献   
10.
Cassini's third and fourth radar flybys, T7 and T8, covered diverse terrains in the high southern and equatorial latitudes, respectively. The T7 synthetic aperture radar (SAR) swath is somewhat more straightforward to understand in terms of a progressive poleward descent from a high, dissected, and partly hilly terrain down to a low flat plain with embayments and deposits suggestive of the past or even current presence of hydrocarbon liquids. The T8 swath is dominated by dunes likely made of organic solids, but also contain somewhat enigmatic, probably tectonic, features that may be partly buried or degraded by erosion or relaxation in a thin crust. The dark areas in T7 show no dune morphology, unlike the dark areas in T8, but are radiometrically warm like the dunes. The Huygens landing site lies on the edge of the T8 swath; correlation of the radar and Huygens DISR images allows accurate determination of its coordinates, and indicates that to the north of the landing site sit two large longitudinal dunes. Indeed, had the Huygens probe trajectory been just 10 km north of where it actually was, images of large sand dunes would have been returned in place of the fluvially dissected terrain actually seen—illustrating the strong diversity of Titan's landscapes even at local scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号