首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
天文学   9篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The full set of high-resolution observations from the Galileo Ultraviolet Spectrometer (UVS) is analyzed to look for spectral trends across the surface of Europa. We provide the first disk-resolved map of the 280 nm SO2 absorption feature and investigate its relationship with sulfur and electron flux distributions as well as with surface features and relative surface ages. Our results have implications for exogenic and endogenic sources. The large-scale pattern in SO2 absorption band depth is again shown to be similar to the pattern of sulfur ion implantation, but with strong variations in band depth based on terrain. In particular, the young chaos units show stronger SO2 absorption bands than expected from the average pattern of sulfur ion flux, suggesting a local source of SO2 in those regions, or diapiric heating that leads to a sulfur-rich lag deposit.While the SO2 absorption feature is confined to the trailing hemisphere, the near UV albedo (300-310 nm) has a global pattern with a minimum at the center of the trailing hemisphere and a maximum at the center of the leading hemisphere. The global nature of the albedo pattern is suggestive of an exogenic source, and several possibilities are discussed. Like the SO2 absorption, the near UV albedo also has local variations that depend on terrain type and age.  相似文献   
2.
We present several energetic charged particle microsignatures of two Lagrange moons, Telesto and Helene, measured by the MIMI/LEMMS instrument. These small moons absorb charged particles but their effects are usually obscured by Tethys and Dione, the two larger saturnian satellites that occupy the same orbits. The scales and structures of these microsignatures are consistent with standard models for electron absorption from asteroid-sized moons in Saturn's radiation belts. In the context of these observations, we also examine the possibility that the 3 km Satellite Methone is responsible for two electron microsignatures detected by Cassini close to this moon's orbit. We infer that a previously undetected arc of material exists at Methone's orbit (R/2006 S5), we speculate how such a structure could form and what its physical characteristics and location could be. The origin of this arc could be linked to a possible presence of a faint ring produced by micrometeoroid impacts on Methone's surface, to E-ring dust clump formation at that distance or to temporary dust clouds produced by enceladian activity that spiral inwards under the effect of non-gravitational forces.  相似文献   
3.
Saturn’s proton radiation belts extend over the orbits of several moons that split this region of intense radiation into several distinct belts. Understanding their distribution requires to understand how their particles are created and evolve. High-energy protons are thought to be dominantly produced by cosmic ray albedo neutron decay (CRAND). The source of the lower energies and the role of other effects such as charge exchange with the gas originating from Enceladus is still an open question. There is also no certainty so far if the belts exist independently from each other and the rest of the magnetosphere or if and how particles are exchanged between these regions. We approach these problems by using measurements acquired by the MIMI/LEMMS instrument onboard the Cassini spacecraft. Protons in the range from 500 keV to 40 MeV are considered. Their intensities are averaged over 7 years of the mission and converted to phase space densities at constant first and second adiabatic invariant. We reproduce the resulting radial profiles with a numerical model that includes radial diffusion, losses from moons and interactions with gas, and a phenomenological source. Our results show that the dominating effects away from the moon sweeping corridors are diffusion and the source, while interactions with gas are secondary. Based on a GEANT4 simulation of the interaction of cosmic rays with Saturn’s rings, we conclude that secondary particles produced within the rings can only account for the high-energy part of the source. A comparison with the equivalent processes within Earth’s atmosphere shows that Saturn’s atmosphere can contribute to the production of the lower energies and might be even dominating at the higher energies. Other possibilities to supply the belts and exchange particles between them, as diffusion and injections from outside the belts, or stripping of ENAs, can be excluded.  相似文献   
4.
The moon Enceladus, embedded in Saturn’s radiation belts, is the main internal source of neutral and charged particles in the Kronian magnetosphere. A plume of water ice molecules and dust released through geysers on the south polar region provides enough material to feed the E-ring and also the neutral torus of Saturn and the entire magnetosphere. In the time period 2005–2010 the Cassini spacecraft flew close by the moon 14 times, sometimes as low as 25 km above the surface and directly through the plume. For the very first time measurements of plasma and energetic particles inside the plume and its immediate vicinity could be obtained. In this work we summarize the results of energetic electron measurements in the energy range 27 keV to 21 MeV taken by the Low Energy Magnetospheric Measurement System (LEMMS), part of the Magnetospheric Imaging Instrument (MIMI) onboard Cassini in the vicinity of the moon in combination with measurements of the magnetometer instrument MAG and the Electron Spectrometer ELS of the plasma instrument CAPS onboard the spacecraft. Features in the data can be interpreted as that the spacecraft was connected to the plume material along field lines well before entering the high density region of the plume. Sharp absorption signatures as the result of losses of energetic electrons bouncing along those field lines, through the emitted gas and dust clouds, clearly depend on flyby geometry as well as on measured pitch angle/look direction of the instrument. We found that the depletion signatures during some of the flybys show “ramp-like” features where only a partial depletion has been observed further away from the moon followed by nearly full absorption of electrons closer in. We interpret this as partially/fully connected to the flux tube connecting the moon with Cassini. During at least two of the flybys (with some evidence of one additional encounter) MIMI/LEMMS data are consistent with the presence of dust in energetic electron data when Cassini flew directly through the south polar plume. In addition we found gradients in the magnetic field components which are frequently found to be associated with changes in the MIMI/LEMMS particles intensities. This indicates that complex electron drifts in the vicinity of Enceladus could form forbidden regions for electrons which may appear as intensity drop-outs.  相似文献   
5.
The plasma plumes of Europa and Callisto   总被引:1,自引:0,他引:1  
We investigate the proposition that Europa and Callisto emit plasma plumes, i.e., a contiguous body of ionospheric plasma, extended in the direction of the corotation flow, analogous to the plume of smoke emitted in the downwind direction from a smokestack. Such plumes were seen by Voyager 1 to be emitted by Titan. We find support for this proposition in published data from Galileo Plasma Science and Plasma Wave observations taken in the corotation wakes of both moons and from magnetometer measurements reported from near the orbit of, but away from, Europa itself. This lends credence to the hypothesis that the plumes escaping from the ionospheres of Europa and Callisto are wrapped around Jupiter by corotation, survive against dispersion for a fairly long time and are convected radially by magnetospheric motions. We present simple models of plume acceleration and compare the plumes of the Europa and Callisto to the known plumes of Titan.  相似文献   
6.
Saturn’s moon Rhea is thought to be a simple plasma absorber, however, energetic particle observations in its vicinity show a variety of unexpected and complex interaction features that do not conform with our current understanding about plasma absorbing interactions. Energetic electron data are especially interesting, as they contain a series of broad and narrow flux depletions on either side of the moon’s wake. The association of these dropouts with absorption by dust and boulders orbiting within Rhea’s Hill sphere was suggested but subsequently not confirmed, so in this study we review data from all four Cassini flybys of Rhea to date seeking evidence for alternative processes operating within the moon’s interaction region. We focus on energetic electron observations, which we put in context with magnetometer, cold plasma density and energetic ion data. All flybys have unique features, but here we only focus on several structures that are consistently observed. The most interesting common feature is that of narrow dropouts in energetic electron fluxes, visible near the wake flanks. These are typically seen together with narrow flux enhancements inside the wake. A phase-space-density analysis for these structures from the first Rhea flyby (R1) shows that Liouville’s theorem holds, suggesting that they may be forming due to rapid transport of energetic electrons from the magnetosphere to the wake, through narrow channels. A series of possibilities are considered to explain this transport process. We examined whether complex energetic electron drifts in the interaction region of a plasma absorbing moon (modeled through a hybrid simulation code) may allow such a transport. With the exception of several features (e.g. broadening of the central wake with increasing electron energy), most of the commonly observed interaction signatures in energetic electrons (including the narrow structures) were not reproduced. Additional dynamical processes, not simulated by the hybrid code, should be considered in order to explain the data. For the small scale features, the possibility that a flute (interchange) instability acts on the electrons is discussed. This instability is probably driven by strong gradients in the plasma pressure and the magnetic field magnitude: magnetometer observations show clearly signatures consistent with the (expected) plasma pressure loss due to ion absorption at Rhea. Another potential driver of the instability could have been gradients in the cold plasma density, which are, however, surprisingly absent from most crossings of Rhea’s plasma wake. The lack of a density depletion in Rhea’s wake suggests the presence of a local cold plasma source region. Hybrid plasma simulations show that this source cannot be the ionized component of Rhea’s weak exosphere. It is probably related to accelerated photoelectrons from the moon’s negatively charged surface, indicating that surface charging may play a very important role in shaping Rhea’s magnetospheric interaction region.  相似文献   
7.
We present Cassini data revealing that protons between a few keV and about 100 keV energy are not stably trapped in Saturn's inner magnetosphere. Instead these ions are present only for relatively short times following injections. Injected protons are lost principally because the neutral gas cloud converts these particles to energetic neutral atoms via charge exchange. At higher energies, in the MeV to GeV range, protons are stably trapped between the orbits of the principal moons because the proton cross-section for charge exchange is very small at such energies. These protons likely result from cosmic ray albedo neutron decay (CRAND) and are lost principally to interactions with satellite surfaces and ring particles during magnetospheric radial diffusion. A main result of this work is to show that the dominant energetic proton loss and source processes are a function of proton energy. Surface sputtering by keV ions is revisited based on the reduced ion intensities observed. Relatively speaking, MeV ion and electron weathering is most important closer to Saturn, e.g. at Janus and Mimas, whereas keV ion weathering is most important farther out, at Dione and Rhea.  相似文献   
8.
Saturn's largest moon, Titan, provides an interesting opportunity to study how dense atmospheres interact with the surrounding plasma environment. Without an intrinsic magnetic field, this satellite's nitrogen-rich atmosphere is relatively unprotected from plasma interactions. Therefore, the energy-deposition rate is important for understanding chemistry and dynamics in Titan's atmosphere. Since the plasma environment can vary significantly we focus here on the T18 Titan encounter using in-situ data from instruments on board the Cassini spacecraft. These instruments cannot provide in-situ information below the spacecraft closest approach altitude (∼>960 km) so we use the Cassini magnetospheric imaging instrument (MIMI) ion-neutral camera (INCA) to remotely image energetic hydrogen particle fluxes (20-80 keV) at altitudes below Titan closest approach. We also use the MIMI low-energy magnetosphere measurements system (LEMMS) to measure the incident ion fluxes as the spacecraft approaches Titan and combine these data sets with an atmospheric model to first reproduce INCA images. We then use this model to calculate the energy-deposition profiles for the observed incident proton flux. Our model is able to reproduce the INCA observations and give the energy density deposited vs. altitude in Titan's atmosphere; however, we find that the incident fluxes and energy-deposition profiles vary significantly during the encounter.  相似文献   
9.
Many recent studies show that energetic electron microsignatures are a powerful tool for characterizing key aspects of Saturn’s magnetospheric configuration and dynamics. In all previous investigations, however, analysis of these features was performed through the use of a series of simplifying assumptions (e.g. dipole field model). Furthermore, typical observable parameters of microsignatures (e.g. energy dependent location) have only been discussed qualitatively and a clear understanding about how microsignatures evolve in the magnetosphere is currently lacking. In this study we present a numerical simulation that we developed in order to describe the apparent motion of microsignatures in Saturn’s magnetosphere, under the influence of arbitrary magnetic and electric field models. Our simulations reproduce successfully some typical microsignature properties (energy–time dispersion, high/low lifetime at low/high electron energies). They also indicate how simplifying assumptions used in analytical methods introduce several systematic errors. We demonstrate that, depending on the application and under certain conditions these errors can be neglected, like for instance for small pitch angles and at regions that the dipole approximation is sufficient (inside the orbit of Dione) or for electron energies below few hundred keV. For higher electron energies, systematic errors amplify significantly and existing analytical methods cannot be used. Our model can reconstruct the energy dependent position of microsignatures observed by the MIMI/LEMMS detector with high accuracy, allowing the inference of non-corotational flows (or electric fields) that can be as low as few tens of m s−1. Since, however the calculation of such flows is indirect, the accuracy of such a determination can be reduced by more than an order of magnitude, if some of these free parameters involved in the simulation cannot be sufficiently constrained. One way to provide such constraints is through inputs (e.g. instantaneous plasma moments) from various Cassini instruments and updated magnetospheric field models. In that case, microsignature analysis may prove to be one of the best methods for attempting to measure or to at least constrain the magnitude of the very slow and global plasma outflow in Saturn’s magnetosphere that is driven by mass loading at Enceladus.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号