首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地质学   5篇
天文学   5篇
  2022年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2004年   2篇
  2002年   2篇
  2000年   1篇
  1973年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
A.D. Kuzmin  B.Y.A Losovsky 《Icarus》1973,18(2):222-223
A model of an icy surface and interior for Callisto gives a predicted thermal radio emission in good agreement with experimental radio astronomical data. The radio brightness temperature of an icy surface will not depend on wavelength. This may be a method to test icy surface hypotheses. The brightness temperatures of other satellites with icy surfaces will be equal to 200–220°K and will not depend on wavelength.  相似文献   
2.
We have measured the pulse broadening by scattering at 40, 60, and 111 MHz for the pulsars PSR B0809+74, B0950+08, B1919+21, and B2303+30. The frequency dependence of the scatter-broadening parameter is analyzed based on these measurements and data from the literature. The dependence obtained purely from the literature data is not consistent with the theory, and the scattering magnitudes differs considerably from the data of the catalog of 706 pulsars of Taylor et al. A two-component model for the frequency dependence of the scattering of the pulsar radio emission in the interstellar medium is proposed. Allowing for the presence of two scattering scales removes both inconsistencies between the observational data for these four pulsars and differences between the observed and theoretical frequency dependences for the scattering, as well as the need to invoke anomalous scattering magnitudes. The data of the catalog of Taylor et al. need to be corrected for the difference in the scattering magnitudes in the two branches of the frequency dependence.  相似文献   
3.
We measured the frequency dependence of the pulsar pulse broadening by scattering over a wide frequency range, from 40 to 2228 MHz, based on direct measurements of this parameter using giant pulses from the pulsar PSR B0531+21 in the Crab Nebula. Our measurements were carried out at the following seven frequencies: 40, 60, and 111 MHz at the Pushchino Radio Astronomy Observatory (Astrospace Center, Lebedev Physical Institute, Russian Academy of Sciences), 406 MHz at the Medicina Observatory (Instituto di Radioastronomia, Italy), and 594, 1430, and 2228 MHz at the Kalyazin Radio Astronomy Observatory (Astrospace Center, Lebedev Physical Institute, Russian Academy of Sciences). The measured frequency dependence of the pulse broadening by scattering τSC (υ) ? υγ, where γ=?3.8±0.2, agrees with a model Gaussian distribution of interstellar inhomogeneities (γ=?4) but falls outside the error limits of correspondence to a Kolmogorov model spectrum of inhomogeneities (γ=?4.4).  相似文献   
4.
Radio flux-density measurements for a large sample of millisecond pulsars at a low frequency of 102 MHz are presented. Using higher frequency measurements, we construct their spectra in the frequency range from 102 MHz to 4.8 GHz, the widest one studied to date. The spectra of millisecond and normal pulsars have been found to differ. The spectra of millisecond pulsars have no low-frequency turnover typical of normal pulsars. The absence of a low-frequency turnover in the spectrum suggests that the emitting regions of millisecond and normal pulsars differ in geometry, which we interpret by deviation of the magnetic field from a dipole one or by compactness of the emitting region.  相似文献   
5.
Observations of the RRAT pulsars J0627+16, J0628+09, J1819?1458, J1826?1419, J1839?01, J1840?1419, J1846?0257, J1848?12, J1850+15, J1854+0306, J1919+06, J1913+1330, J1919+17, J1946+24, and J2033+00 observed earlier on the 64-m Parkes telescope (Australia) and the 300-m Arecibo radio telescope (Puerto Rico) at 1400 MHz were conducted at 111 MHz on the LSA radio telescope of the Pushchino Radio Astronomy observatory in 2010–2012. A characteristic feature of these pulsars is their sporadic radio emission during rare active epochs and the absence of radio emission during long time intervals. No appreciable flare activity of these pulsars was detected in the Pushchino observations. However, processing the observations using the Fast Folding Algorithm taking into account known information about the pulsar dispersion measures and periods shows that, even during quiescent intervals, the majority of the studied pulsars generate weak radio pulses with a period corresponding to that of the radio emission of the sporadic pulses observed at active epochs. The flux of this radio emission does not exceed 100 mJy at the pulse peak, even at the low frequency of 111 MHz. This considerably hinders detection of the radio emission of RRAT pulsars at high frequencies, since the radio fluxes of RRAT pulsars decreases with increasing frequency.  相似文献   
6.
Results of long-term (2002–2010) monitoring of giant radio pulses of the pulsar PSR B0531+21 in the Crab Nebula at ν = 44, 63, and 111 MHz are reported. The observations were conducted on the LPA and DKR-1000 radio telescopes of the Lebedev Physical Institute. The giant pulses were analyzed using specialized software for calculating the magnitude of the scattering τ sc , signal-to-noise ratio, and other required parameters by modeling the propagation of a pulse in the scattering interstellar medium. Three pronounced sharp increases in the scattering were recorded in 2002–2010. Analysis of the dependence between the variations of the scattering and dispersion measure (data of Jodrell Bank Observatory) shows a strong correlation at all frequencies, ≈0.9. During periods of anomalous increase in scattering and the dispersion measure, the index γ in the frequency dependence of the scattering in the Crab Nebula, τ sc (ν) ∝ ν γ , was smaller than the generally accepted values γ = 4.0 for a Gaussian and γ = 4.4 for a Kolmogorov distribution. This difference in combination with the piece-wise power-law spectrum may be due to the presence of a dense plasma structure with developed Langmuir turbulence in the nebula, along the pulsar’s line of sight. The magnetic field in the Crab Nebula estimated from measurements of the rotation measure toward the pulsar is 100 μG.  相似文献   
7.
We have detected giant pulses from the millisecond pulsar PSR B1937+214 at the lowest frequency of 112 MHz. The observed flux density at the pulse peak is ~40 000 Jy, which exceeds the average level by a factor of 600. Pulses of such intensity occur about once per 300 000 periods. The brightness temperature of the observed giant pulses is T B≈1035 K. We estimated the pulse broadening by interstellar scattering to be τsc=3–10 ms. Based on this estimate and on published high-frequency measurements of this parameter, we determined the frequency dependence of the pulse broadening by scattering: τsc(f)=25 × (f/100)?4.0±02.  相似文献   
8.
Giant pulses have been detected from the pulsar PSR B0031-07. A pulse with an intensity higher than that of the average pulse by a factor of 50 or more is encountered approximately once per 300 observed periods. The peak flux density of the strongest pulse was 530 Jy, which is a factor of 120 higher than the peak flux density of the average pulse. The giant pulses are a factor of 20 narrower than the integrated profile and are clustered about its center.  相似文献   
9.
We have detected the new pulsar PSR J2225+35, which displays the properties of the new class of radio sources “Rotating Radio Transients” (RRATs). RRATs are distinguished by isolated bursts of radio emission and long quiet periods. Throughout 45 observations with a total duration of about 3 hr, only two bursts of radio emission lasting a total of about 10 min were detected in two observations. The temporal and frequency delay of the pulses corresponds to the dispersion measure DM = 51.8 pc/cm3 and the distance d = 3.05 kpc. The period of the pulses is P = 0.94 s. The emission is polarized, with the rotation measure being RM = 49.8 rad/m2.  相似文献   
10.
Losovsky  B. Ya.  Glushak  A. P. 《Astronomy Reports》2022,66(11):981-988
Astronomy Reports - Search observations of radio signals from the new magnetar SGR J1830–0645 have been carried out since January 2021 and up to the present at the Pushchino Radio Astronomy...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号