首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
海洋学   1篇
  2018年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Laboratory measurements of sound velocity in unconsolidated marine sediment were performed to establish specific correction curves between temperature and sound velocity. Cores from the Hupo Basin and the southern sea of Geumo Island were cooled and sound velocity was measured while gradually increasing temperature (from 3 to 30°C). Sediment textural and physical properties (porosity, water content, and bulk density) were measured at the same depth. Sound velocity increases with temperature for clay, mud, silt, and sand sediment, resulting in values of approximately 2.65, 2.72, 2.78, and 3.10?m/s/°C, respectively. These results are similar to those of previous studies, and differences are likely due to density, porosity, and clay contents of the sediment. Using these results, we present correction curves for sound velocity temperature dependence for each sediment texture, which can be used to correct from laboratory to in situ values to develop accurate geoacoustic model.  相似文献   
2.
Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole–dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E–W magnetotelluric lines and dipole–dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号