首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地质学   6篇
海洋学   7篇
天文学   3篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2003年   2篇
排序方式: 共有16条查询结果,搜索用时 20 毫秒
1.
Multidisciplinary study of seep-related structures on Southern Vøring Plateau has been performed during several UNESCO/IOC TTR cruises on R/V Professor Logachev. High-resolution sidescan sonar and subbottom profiler data suggest that most of the studied fluid discharge structures have a positive relief at their central part surrounded by depression. Our data shows that the present day fluid activity is concentrated on the top of these “seep mounds”. Number of high hydrocarbon (HC) gas saturated sediment cores and 5 cores with gas hydrate presence have been recovered from these structures. δ13C of methane (between −68 and −94.6‰ VPDB) and dry composition of the gas points to its biogenic origin. The sulfate depletion generally occurs within the upper 30–200 cm bsf and usually coincides with an increase of methane concentration. Pore water δ18O ranges from 0.29 to 1.14‰ showing an overall gradual increase from bottom water values (δ18O ∼ 0.35‰). Although no obvious evidence of fluid seepage was observed during the TV surveys, coring data revealed a broad distribution of living Pogonophora and bacterial colonies on sea bottom inside seep structures. These evidences point to ongoing fluid activity (continuous seepage of methane) through these structures. From other side, considerable number and variety of chemosynthetic macro fauna with complete absence of living species suggest that present day level of fluid activity is significantly lower than it was in past. Dead and subfossil fauna recovered from various seep sites consist of solemyid (Acharax sp.), thyasirid and vesicomyid (cf. Calyptogena sp.) bivalves belonging to chemosymbiotic families. Significant variations in δ13C (−31.6‰ to −59.2‰) and δ18O (0.42‰ and 6.4‰) of methane-derived carbonates collected from these structures most probably related to changes in gas composition and bottom water temperature between periods of their precipitation. This led us to ideas that: (1) seep activity on the Southern Vøring Plateau was started with large input of the deep thermogenic gas and gradually decries in time with increasing of biogenic constituent; (2) authigenic carbonate precipitation started at the near normal deep sea environments with bottom water temperature around +5 °C and continues with gradual cooling up to negative temperatures recording at present time.  相似文献   
2.
Four samples (TL5b, TL11h, TL11i, and TL11v) from the pristine collection of the Tagish Lake meteorite, an ungrouped C2 chondrite, were studied to characterize and understand its alteration history using EPMA, XRD, and TEM. We determined that samples TL11h and TL11i have a relatively smaller proportion of amorphous silicate material than sample TL5b, which experienced low‐temperature hydrous parent‐body alteration conditions to preserve this indigenous material. The data suggest that lithic fragments of TL11i experienced higher degrees of aqueous alteration than the rest of the matrix, based on its low porosity and high abundance of coarse‐ and fine‐grained sheet silicates, suggesting that TL11i was present in an area of the parent body where alteration and brecciation were more extensive. We identified a coronal, “flower”‐like, microstructure consisting of a fine‐grained serpentine core and coarse‐grained saponite‐serpentine radial arrays, suggesting varied fluid chemistry and crystallization time scales. We also observed pentlandite with different morphologies: an exsolved morphology formed under nebular conditions; a nonexsolved pentlandite along grain boundaries; a “bulls‐eye” sulfide morphology and rims around highly altered chondrules that probably formed by multiple precipitation episodes during low‐temperature aqueous alteration (≥100 °C) on the parent body. On the basis of petrologic and mineralogic observations, we conclude that the Tagish Lake parent body initially contained a heterogeneous mixture of anhydrous precursor minerals of nebular and presolar origin. These materials were subjected to secondary, nonpervasive parent‐body alteration, and the samples studied herein represent different stages of that hydrous alteration, i.e., TL5b (the least altered) < TL11h < TL11i (the most altered). Sample TL11v encompasses the petrologic characteristics of the other three specimens.  相似文献   
3.
4.
Carbonate chimneys and other carbonate structures occur widespread in the Gulf of Cadiz and probably reflect the presence of cold seeps and associated release of methane in the geological past, possibly in the Early Pleistocene, but it is unclear under what conditions and by which processes these carbonates were formed. We studied a fossil methane-related carbonate crust collected from the Kidd mud volcano in the gulf. Concentrations of microbial lipids, their stable carbon isotope composition, sequences of fossil 16S rRNA genes of anaerobic methanotrophic archaea in combination with mineralogical and carbon and oxygen isotopic composition of carbonate were obtained for seven different horizons of the crust. This combination of organic and inorganic geochemical techniques with molecular ecological methods gave a consistent view on processes resulting in the formation of the crust and indicated that it took place in two phases and in a downward direction. Archaeal lipid biomarkers and fossil 16S rRNA gene sequence data revealed the dominance of archaeal ANME-2 group and elevated methane partial pressures during the formation of the top part of the crust. The lower part of the carbonate was likely formed in an environment with reduced methane fluxes as revealed by the dominance of fossil remains of ANME-1 archaea. The combination of these methods can be used as an effective tool to reconstruct in unprecedented detail the palaeo-biogeochemical processes resulting in the formation of carbonate fabrics. This interdisciplinary strategy may also be applied for other fossil methane-derived carbonates, generating new concepts and knowledge about past methane-related carbonate systems.  相似文献   
5.
The results of the study of clay mineral alterations in Upper Pleistocene sediments of the southern trough in the Guaymas Basin (Gulf of California) due to the influence of hydrothermal solutions and heat produced by sill intrusions are discussed. Core samples from DSDP Holes 477 and 477A were taken for the analysis of clay minerals. Application of the method of modeling X-ray diffraction patterns of oriented specimens of the finely dispersed particles made it possible to establish the phase composition of clay minerals, determine their structural parameters, and obtain reliable quantitative estimates of their contents in natural mixtures. The modeling data allowed us to characterize reliably the transformation of clay minerals in sediments of the hydrothermally active southern trough in the Guaymas Basin. In Upper Pleistocene sandy–clayey sediments of the southern trough, changes in the composition of clay minerals occurred under the influence of a long-living hydrothermal system. Its lower part (interval 170.0–257.5 m) with maximum temperatures (~300°C) was marked by the formation of chlorite. Terrigenous clay minerals are not preserved here. Saponite appears at a depth of 248 m in the chlorite formation zone. Higher in the sedimentary section, the interval 146–170 m is also barren of terrigenous clay minerals. Sediments of this interval yielded two newly formed clay minerals (chlorite and illite), which were formed at lower temperatures (above 180°C and below 300°C, approximately up to ~250°C), while the relatively low-temperature upper part (110–146 m) of the hydrothermal system (from ~140°C to ~180°C) includes the mixture of terrigenous and newly formed clay minerals. Terrigenous illite is preserved here. Illitization of the mixed-layer illite–smectite was subjected to illitization. The terrigenous montmorillonite disappeared, and chlorite–smectite with 5–10% of smectite layers were formed. In the upper interval (down to approximately 110 mbsf), the composition of terrigenous clay minerals remains unchanged. They are composed of the predominant mixed-layer illite–smectite and montmorillonite, the subordinate illite, mixed-layer chlorite–smectite with 5% of smectite layers, mixed-layer kaolinite–smectite with 30% of smectite layers, and kaolinite. This composition of clay minerals changed under the influence of sill intrusions into the sedimentary cover at 58–105 m in the section of Hole 477. The most significant changes are noted in the 8-m-thick member above the sill at 50–58 m. The upper part of this interval is barren of the terrigenous mixed-layer illite–smectite, which is replaced by the newly formed trioctahedral smectite (saponite). At the same time, the terrigenous dioctahedral smectite (montmorillonite) is preserved. The composition of terrigenous clay minerals remains unchanged at the top of the unit underlying the sill base.  相似文献   
6.
Carbonate macrofaunal remains and diagenetic tubes collected from a number of structures in the Central Barents Sea area during the 18th TTR (Training Through Research) cruise were subdivided into three groups according to the results of stable carbon and oxygen isotopes analysis. The first group includes carbonates that were formed from bicarbonate only from surrounding sea waters. The carbonates of the second group were formed during diagenesis with use of mixed sources of bicarbonate. The fourth group includes methane-derived carbonates that were formed as a result of anaerobic oxidation of methane (AOM).  相似文献   
7.
8.
Four pristine specimens of the Tagish Lake C2 chondrite meteorite were previously determined through mineralogy, petrology, and organic chemistry to have been affected by aqueous alteration in the order (from least to most altered) TL5b < TL11h < TL11i, and TL11v as a mixture of the other specimens (Herd et al. 2011 ; Blinova et al. 2014 ). Here, we report the whole‐rock data for a total of 65 elements for the same four Tagish Lake samples as determined by ICP‐MS and ICP‐AES (utilizing the Parr bomb digestion method on small samples, approximately 50 mg), and by INAA. Our data demonstrate that the determined aqueous alteration sequence has a positive correlation with trace elements, such as K and Br that are mobile during aqueous alteration, which appear to be controlled by an increase of phyllosilicates from least to most altered samples. Yet, the homogeneity of other elements suggests that elemental mass transfer occurred on a localized scale and aqueous alteration was isochemical for these elements, similar to other primitive carbonaceous chondrites. By plotting data from three samples (TL5b, TL11h, and TL11i) on a Zn/Mn versus Sc/Mn diagram, we also confirm that the Tagish Lake meteorite is not a simple mixture of CI and CM material.  相似文献   
9.
10.
The West Alboran Basin was previously classified as a mud volcanic province consisting of two mud volcano (MV) fields that are inactive at the present day: the Northern (Spanish) and the Southern (Moroccan) fields. The discovery of the first active mud volcano (Carmen; cruise TTR-17) in 2008, along with several pockmarks at the central part of the basin, motivates more careful geological and geochemical analysis of previous data and comparison to new observations.Gas bubbling from the crater of Carmen MV was observed and recorded using an underwater TV-system and a large TV-grab sample. The gas mainly consisted of methane with less than 1% wetness. However, all sets of homologues up to pentane were detected in the mud breccia of Carmen MV. Both molecular and stable carbon isotopic compositions, and their distribution along the core length, suggest a deep thermogenic source of hydrocarbons (HCs). Composition of the pore water from Carmen MV also points to a deep source of mud volcanic water. The isotopic results indicate that the source of mud volcanic water is the dehydration of clay minerals in the thermal zone of the smectite-to-illite transformation. Our observations allow us to infer the presence of structure II gas hydrates in mud breccia on the top of Carmen MV.High HC gas saturation in sediments in some pockmarks accompanied with live chemosynthetic fauna directly indicates the strong seepage activity of these structures. For the first time, authigenic carbonate crusts and chimneys with associated living chemosynthetic bivalves and tubeworms were sampled from a seep site in the West Alboran Sea. Authigenic carbonates consist of aragonite and calcite, and are characterized by a light carbon isotopic signature, up to −37.2‰ PDB, which points to their methane-derived origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号