首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   4篇
  国内免费   2篇
大气科学   7篇
地球物理   36篇
地质学   43篇
海洋学   57篇
天文学   10篇
综合类   6篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   11篇
  2010年   3篇
  2009年   9篇
  2008年   13篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   8篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   8篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
1.
A finite-difference quasigeostrophic (QG) model of an open ocean region has been employed to produce a dynamically constrained synthesis of acoustic tomography and satellite altimetry data with in situ observations. The assimilation algorithm is based upon the 4D variational data interpolation scheme controlled by the model's initial and boundary conditions. The data sets analyzed include direct and differential travel times measured at the array of five acoustic transceivers deployed by JAMSTEC in the region of the Kuroshio Extension in 1997, Topex/Poseidon altimetry, CTD soundings, and ADCP velocity profiles. The region monitored is located within the area 27.5°–36.5°N, 143°–155°. The results of assimilation show that mesoscale variability can be effectively reconstructed by five transceivers measuring direct and reciprocal travel times supported by relatively sparse in situ measurements. The misfits between model and data lie within the observational error bars for all the data types used in assimilation. We have compared the results of assimilation with the statistical inversion of travel time data and analyzed energy balances of the optimized model solution. Energy exchange between the depth-averaged and shear components of the observed currents reveals a weak decay of the barotropic mode at the rate of 0.2 ± 0.7⋅10−5 cm2/s3 due to topographic interaction. Mean currents in the region are unstable with an estimate of the available potential energy flux from the mean current to the eddies of 4.7 ± 2.3⋅10−5 cm2/s3. Kinetic energy transition has the same sign and is estimated as 2.8 ± 2.5⋅10−5 cm2/s3. Potential enstrophy is transferred to the mesoscale at a rate of 5.5 ± 2.7⋅10−18 s−3. These figures provide observational evidence of the properties of free geostrophic turbulence which were predicted by theory and observed in numerical experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Some features of jump in water temperature in aSargassum forest   总被引:1,自引:0,他引:1  
To clarify the influence of aSargassum forest on water temperature distributions observations were made inside and outside aSargassum forest off the Nagata Shore on the northern Saiki Bay open to the Bungo Channel on the Pacific side of Kyushu, Japan. About sixty thermistor probes were deployed at 0.5 m depth intervals from the bottom to the sea surface at seven stations spaced at 50–80 m distances along two transects: one inside the forest and the other outside. Water temperature was measured at five minutes intervals from 6 to 9 August 1987 with thermistor probes. The spatial standing crop distribution of theSargassum forest along the transects was investigated. A water temperature jump of about 2°C, recorded during the observation, is probably caused by an intrusion of a warm water mass from the central Bungo Channel to Saiki Bay. The water temperature jump under theSargassum forest on the rough bottom with stones occurred one to two hours behind that outside the forest (sandy bed) although the distance between the transects inside and outside the forest was only 50–80 m. It is suggested that theSargassum forest and the rough bottom would prevent intruding warm water from smoothly replacing cold water due to resistance of theSargassum species and the bottom to a current.  相似文献   
3.
We proposed an empirical equation of sea surface dimethylsulfide (DMS, nM) using sea surface temperature (SST, K), sea surface nitrate (SSN, μM) and latitude (L, °N) to reconstruct the sea surface flux of DMS over the North Pacific between 25°N and 55°N: ln DMS = 0.06346 · SST  0.1210 · SSN  14.11 · cos(L)  6.278 (R2 = 0.63, p < 0.0001). Applying our algorithm to climatological hydrographic data in the North Pacific, we reconstructed the climatological distributions of DMS and its flux between 25 °N and 55 °N. DMS generally increased eastward and northward, and DMS in the northeastern region became to 2–5 times as large as that in the southwestern region. DMS in the later half of the year was 2–4 times as large as that in the first half of the year. Moreover, applying our algorithm to hydrographic time series datasets in the western North Pacific from 1971 to 2000, we found that DMS in the last three decades has shown linear increasing trends of 0.03 ± 0.01 nM year− 1 in the subpolar region, and 0.01 ± 0.001 nM year− 1 in the subtropical region, indicating that the annual flux of DMS from sea to air has increased by 1.9–4.8 μmol m− 2 year− 1. The linear increase was consistent with the annual rate of increase of 1% of the climatological averaged flux in the western North Pacific in the last three decades.  相似文献   
4.
Standing stocks and production rates of phytoplankton and planktonic copepods were investigated at 15 stations in the Inland Sea of Japan during four cruises in October–November 1979, January, April and June 1980. The overall mean of phytoplankton biomass was relatively constant during the study period, ranging from 2.3 mg chl.a m–3 in April to 3.6 mg chl.a m–3 in October–November. Primary production was low in January (mean: 90 mg C m–2 d–1), but higher than 375 mg C m–2 d–1 on the other occasions. Integrated annual primary production was 122 g C m–2 yr–1. In terms of carbon weight,Paracalanus parvus was the most important copepod species. The variation of the mean copepod biomass (range: 7.6 mg C m–3 in April to 20.2 mg C m–3 in June) was smaller than that of copepod production, which was estimated by the Ikeda-Motoda's physiological method. Copepod producion was low in cold seasons (0.6 and 0.9 mg C m–3 d–1 in January and April, respectively), and increased, following the elevation of primary production, to 4.9 mg C m–3 d–1 in June. Annual copepod production was 33.7 g C m–2 yr–1, of which herbivore (secondary) production was 26.4 g C m–2 yr–1 (21.7% of primary production). The ratios of pelagic planktivorous fish catch and total fish catch to the primary production were 0.82 and 1.8%, respectively, indicating very high efficiency in exploiting fishery resources in the Inland Sea of Japan.  相似文献   
5.
An experiment on evapotranspiration from citrus trees under irrigation with saline waterwas carried out for 4 months. Two lysimeters planted with a citrus tree in the green house wereused. One lysimeter was irrigated with saline water (NaCl and CaCl2 of 2000 mg/L equivalence,EC = 3.8 dS/m, SAR = 5.9) and the other was irrigated with freshwater using drip irrigation. Theapplied irrigation water was 1.2 times that of the evapotranspiration on the previous day.Evapotranspiration was calculated as the change in lysimeter weight recorded every 30 minutes.The lysimeters were filled with soil with 95.8% sand. The results of the experiment were as follows.(i) The evapotranspiration from citrus tree was reduced after irrigation with saline water. Theevapotranspiration returns to normal after leaching. However it takes months to exhaust the saltfrom the tree. ( ii ) To estimate the impact of irrigation with saline water on the evapotranspirationfrom citrus trees, the reduction coefficient due to salt stress (Ks) was used in this experiment.Evapotranspiration under irrigation with saline water (ETs) can be calculated from evapotranspira-tion under irrigation with freshwater (ET) by the equation ETs = Ks× ET. Ks can be expressed as afunction of ECsw. (iii) The critical soil-water electrical conductivity (ECsw) is 9.5 dS/m, beyondwhich adverse effects on evapotranspiration begin to appear. If ECsw can be controlled at below9.5 dS/m, saline water can be safely used for irrigation.  相似文献   
6.
7.
The spatial distribution of the strength inside the earth-fill is identified by the sounding tests. In this research, the Swedish weight sounding (SWS) is employed, and the spatial high-density test is performed to identify the spatial correlation structure. Furthermore, the synthesised approach of the SWS and surface wave method, which is one of the geophysical method, is proposed to compensate the shortage of each approach. Consequently, the correlation structure of an earth-fill could be identified accurately, and the high resolution of the spatial distribution could be visualised based on the survey results.  相似文献   
8.
The Bungo Channel in southwestern Japan receives both warm, called Kyucho, and cold deep-water intrusions (bottom intrusion) from the Pacific Ocean. Abundances of Prochlorococcus, Synechococcus, and eukaryotic picophytoplankton were monitored from 18 July to 17 August 2001 to clarify whether advected picophytoplankton from the Pacific Ocean can grow in the channel or not. Synechococcus cells were further discriminated into low- and high-PUB types according to their fluorescence property in flow cytometry. From 18 to 25 July, the water temperature decreased by 3 °C at a 5-m depth at all stations, indicating the occurrence of a bottom intrusion. From 25 July to 4 August, a Kyucho occurred and the water temperature rapidly increased. From 4 to 17 August, a bottom intrusion and a Kyucho both occurred twice, although the intensities were smaller than those occurring until 4 August. From 18 to 30 July, the abundance of both Prochlorococcus and a high-PUB type of Synechococcus drastically decreased because of a bottom intrusion; however, the abundances rapidly increased due to the advection by a Kyucho. These advected cells increased from 4 to 17 August in the channel and Kitanada Bay. Changes in the abundance of low-PUB type of Synechococcus and eukaryotic picophytoplankton were less noticeable than those in the abundance of Prochlorococcus and high-PUB type. The present study demonstrated that oceanic picophytoplankton advected by the Kyucho could grow in the channel. However, abundances of low-PUB type and eukaryotic picophytoplankton increased higher than those of Prochlorococcus and high-PUB type did. Thus, these oceanic phytoplankters will be excluded when Kyucho does not occur for a long time. The co-occurrence of various types of picophytoplankton found in the channel is probably achieved by both Kyucho event and their growth capability in the channel.  相似文献   
9.
Zooplankton play a key role in the pelagic foodweb by controllingphytoplankton production and shaping pelagic ecosystems. Inaddition, because of their critical role as a food source forlarval and juvenile fish, the dynamics of zooplankton populationshave a significant influence on recruitment to fish stocks.In 1961, ICES convened the First Zooplankton Production Symposiumin Charlottenlund, Denmark. ICES also played a leading rolein the Second Zooplankton Production Symposium on "ZooplanktonProduction: measurement and role in global  相似文献   
10.
Our analysis of the last three decades of retrospective data of vertical distributions and size composition of chlorophyll-a (Chl-a) over the western North Pacific has revealed significant changes of three indices related to Chl-a during summer season, as follows: (1) decreasing linear trend of the proportion of Chl-a in surface layer to that of the whole water column by 0.4 and 2.3% year−1 in the subtropical area along 137°E (STA137) during 1972 to 1997 and in the Kuroshio Extension area along 175°E (KEA175) during 1990 to 2001; (2) increasing linear trend of the depth of subsurface Chl-a maximum (DCM) by 0.4 and 2.6 m year−1 in STA137 and KEA175; and (3) decreasing linear trend of larger-size Chl-a (>3 μm) by 0.1 and 2.5% year−1 in STA137 and KEA175, respectively. Water density (σ θ ) at 75 m depth had also decreased by 0.006 and 0.05 year−1 in STA137 and KEA175, respectively. The ratio of biogenic opal to biogenic CaCO3 in the sinking flux decreased by 0.015 year−1 in the subtropical region from 1997 to 2005. These findings may indicate that the subsurface chlorophyll maximum is deepening and larger phytoplankton such as diatoms has been decreasing during the past decade, associated with the decreasing density of surface water caused by warming in the western North Pacific, especially in the summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号