首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
测绘学   3篇
大气科学   3篇
地球物理   10篇
地质学   4篇
海洋学   8篇
天文学   31篇
综合类   1篇
自然地理   3篇
  2022年   1篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2013年   8篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1978年   1篇
  1972年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
We present observations of a sample of optically faint, hard X-ray sources of the kind likely to be responsible for much of the hard X-ray background. We confirm that such sources are easily detected in the near-infrared, and find that they have a featureless continuum suggesting that the active nucleus is heavily obscured. The infrared colours of the majority of the targets observed are consistent with absorbed elliptical host galaxies at z =1–2. It is likely that we are observing some of the brighter members of the important new class of X-ray type II quasars.  相似文献   
2.
Abstract

by L. R. Lyons and D. J. Williams. D. Reidel Publishing Co., .231 pages (ISBN 90-2771663-3). Price 130.00 DFL (1984).  相似文献   
3.
In the Eastern Lachlan Orogen, the mineralised Molong and Junee‐Narromine Volcanic Belts are two structural belts that once formed part of the Ordovician Macquarie Arc, but are now separated by younger Silurian‐Devonian strata as well as by Ordovician quartz‐rich turbidites. Interpretation of deep seismic reflection and refraction data across and along these belts provides answers to some of the key questions in understanding the evolution of the Eastern Lachlan Orogen—the relationship between coeval Ordovician volcanics and quartz‐rich turbidites, and the relationship between separate belts of Ordovician volcanics and the intervening strata. In particular, the data provide evidence for major thrust juxtaposition of the arc rocks and Ordovician quartz‐rich turbidites, with Wagga Belt rocks thrust eastward over the arc rocks of the Junee‐Narromine Volcanic Belt, and the Adaminaby Group thrust north over arc rocks in the southern part of the Molong Volcanic Belt. The seismic data also provide evidence for regional contraction, especially for crustal‐scale deformation in the western part of the Junee‐Narromine Volcanic Belt. The data further suggest that this belt and the Ordovician quartz‐rich turbidites to the east (Kirribilli Formation) were together thrust over ?Cambrian‐Ordovician rocks of the Jindalee Group and associated rocks along west‐dipping inferred faults that belong to a set that characterises the middle crust of the Eastern Lachlan Orogen. The Macquarie Arc was subsequently rifted apart in the Silurian‐Devonian, with Ordovician volcanics preserved under the younger troughs and shelves (e.g. Hill End Trough). The Molong Volcanic Belt, in particular, was reworked by major down‐to‐the‐east normal faults that were thrust‐reactivated with younger‐on‐older geometries in the late Early ‐ Middle Devonian and again in the Carboniferous.  相似文献   
4.
Multi-spacecraft observations in the interplanetary space are used to build up a picture of the distribution of solar wind velocities in heliographic latitude and longitude. Analyses are made for the solar wind data obtained by Sakigake, Suisei, IMP-8 and Giotto between late 1985 and early 1987. Until Janaury 1986, high-speed streams were extended across the equator from the high latitudes of the heliosphere. After March 1986, high-speed streams were rarely seen on the equator. Although there remained a slight wavy pattern in latitude-longitude structure, low-speed streams were basically ranged along the equator. After January 1987, the amplitude of this wavy pattern was further diminished and low-speed regions were completely aligned to the equator.  相似文献   
5.
Rainfall data collected on and around the Soufriere Hills Volcano, Montserrat between 1998 and 2003 were analysed to assess the impact on primary volcanic activity, defined here as pyroclastic flows, dome collapses, and explosions. Fifteen such rainfall-triggered events were identified. If greater than 20 mm of rain fell on a particular day, the probability of a dome collapse occurring on that day increased by a factor of 6.3% to 9.2%, compared to a randomly chosen day. Similarly, the probability of observing pyroclastic flows and explosions on a day with > 20 mm of rainfall increased by factors of 2.6 and 5.4, respectively. These statistically significant links increased as the rainfall threshold was increased. Seventy percent of these rainfall-induced dome collapse episodes occurred on the same calendar day (most within a few hours) as the onset of intense rainfall, but an extra 3 occurred one or two calendar days later. The state of the volcano was important, with the rainfall–volcanic activity link being strongest during periods of unstable dome growth and weakest during periods of no dome growth or after a recent major collapse.Over 50% of the heavy rain days were associated with large-scale weather systems that can potentially be forecast up to a few days ahead. However, the remaining heavy rain days were associated with small-scale, essentially unpredictable weather systems. There was significant variability in the amount of rainfall recorded by different rain gauges, reflecting topographic variations around the volcano but also the inherent small-scale variability within an individual weather system. Hence, any monitoring/warning program is recommended to use a network, rather than just a single gauge. The seasonal cycle in rainfall was pronounced, with nearly all the heavy rain days occurring in the May–December wet season. Hence, the dome was at its most vulnerable at the beginning of the wet season after a period of uninterrupted growth. Interannual variability in rainfall was related to tropical Pacific and Atlantic sea surface temperature anomalies, and holds out the prospect of some limited skill in volcanic hazard forecasts at even longer lead times.  相似文献   
6.
Summary. In 1984, the Australian Bureau of Mineral Resources and the Geological Survey of Queensland recorded a regional seismic reflection profile of over 800 km length from the eastern part of the Eromanga Basin to the Beenleigh Block east of the Clarence Moreton Basin. A relatively transparent upper crustal basement with an underlying, more reflective lower crust is characteristic of much of the region. Prominent westerly dipping reflectors occur well below the sediments of the eastern margin of the Clarence Moreton Basin and the adjacent Beenleigh Block, and provide some of the most interesting features of the entire survey. A wide angle reflection/refraction survey of 192 km length and an expanding reflection spread of 25 km length were recorded across the Nebine Ridge. The only clear deep reflectors are interpreted as P-to-SV or SV-to-P converted reflections from a mid-crustal boundary at a depth of about 17 km. The combined Nebine Ridge data provide well-constrained P and S wave velocity models of the upper crust, and suggest a crustal structure quite different from that beneath the adjacent Mesozoic basins.  相似文献   
7.
8.
9.
Large disturbances in the interplanetary medium were observed by several spacecraft during a period of enhanced solar activity in early February 1986. The locations of six solar flares and the spacecraft considered here encompassed more than 100° of heliolongitude. These flares during the minimum of cycle 21 set the stage for an extensive multi-spacecraft comparison performed with a two-dimensional, magnetohydrodynamic (MHD) numerical experiment. The plasma instruments on the European Space Agency (ESA)'s GIOTTO spacecraft, on its way to encounter Comet Halley in March 1986, made measurements of the solar wind for up to 8 hours per day during February. We compare solar wind measurements from the Johnstone Plasma Analyzer (JPA) experiment on GIOTTO with the MHD simulation of the interplanetary medium throughout these events. Using plasma data obtained by the IMP-8 satellite in addition, it appears that an extended period of high solar wind speed is required as well as the simulated flares to represent the interplanetary medium in this case. We also compare the plasma and magnetometer data from VEGA-1 with the MHD simulation. This comparison tends to support an interpretation that the major solar wind changes at both GIOTTO and VEGA-1 on 8 February, 1986 were due to a shock from a W05° solar flare on 6 February, 1986 (06:25 UT). The numerical experiment is considered, qualitatively, to resemble the observations at the former spacecraft, but it has less success at the latter one.  相似文献   
10.
A concept of aquatic macrophyte management that integrates the positive and negative aspects of vegetation in lakes and rivers is discussed. This integrated approach involves three factors: macrophyte control, macrophyte enhancement, and identification and resolution of the conflicts created by multiple use of a waterbody. The primary decision in macrophyte management programmes must be whether to optimise for single‐purpose or for multipurpose use of the waterbody. Both technical (macrophyte control and enhancement) and social (conflict resolution) procedures are required to solve problems associated with the macrophyte status of multipurpose waterbodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号