首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   2篇
海洋学   2篇
天文学   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 93 毫秒
1
1.
Interface waves such as the Scholte wave are a useful tool to study geoacoustic properties and can be conventionally generated by an explosive or a pneumatic source on/above the seafloor. This type of source, however, generates strong compressional waves in the water and sediment at the same time; these waves then disturb an observation of interface waves and leads to difficulty in processing. These sources are also relatively hard to control at sea from a viewpoint of repeatability and stability of interface waves to be generated. In addition, environmental problems caused by those sources is a concern. In this paper, an electromagnetic induction source whose vibrator plate hits the seafloor directly and excites interface waves is described. The capability of this source was evaluated both in a water tank and at seashore. The pulsed Scholte waves excited both by several types of electromagnetic induction source having a different shape of vibrator plate and by dropping weight were transmitted in sediment and received using geophones. As a result of comparison of measured signals, the pulse signal propagating from the source demonstrates a sharper rise time than that from dropping weight  相似文献   
2.
Surface water samples were collected from Langtang Lirung glacier outlet point to the Narayani river system in central Nepal in order to investigate the role of elevation in the variation of chemistry along the drainage networks. The chemistry of Langtang–Narayani river system was dominated by sulfide oxidation coupled with carbonate dissolution and weathering of silicate minerals. Calcium and magnesium concentrations were relatively higher than other cations and the sum of both species strongly correlated with alkalinity, supporting the dissolution of carbonate and dolomite as the dominant source for these ions. Aluminosilicate minerals primarily as albite and anorthite appeared as dominant silicate minerals within the drainage basin. Bisiallitization was the dominant type of weathering within the entire drainage system. Hydrogen ion concentration was lower in the low elevation sites than in high elevation sites reflecting the more consumption of carbon dioxide in the low elevation sites due to enhanced chemical weathering rates. Furthermore, major solutes like sum of base cations, silicon as well as alkalinity increased in concentration in the lower elevation sites. All regulating factors appeared to be directly related to elevation and hence elevation appeared to be the prime factor for the variation in chemical species along the Langtang–Narayani river system. Toshiyuki Masuzawa: deceased.  相似文献   
3.
A 2m-long sediment core from the siliceous ooze domain in the Central Indian Ocean Basin (CIOB; 13‡03′S: 74‡44′E; water depth 5099m) is studied for calcium carbonate, total organic carbon, total nitrogen, biogenic opal, major and few trace elements (Al, Ti, Fe, K, Mg, Zr, Sc,V, Mn, Cu, Ni, Zn, Co, and Ba) to understand the productivity and intensity of terrigenous supply. The age model of the sediment core is based on U-Th dating, occurrence of Youngest Toba Tuff of ∼ 74 ka and Australasian microtektites of ∼ 770 ka. Low carbonate content (< 1%) of sediment core indicates deposition below the carbonate compensation depth. Organic carbon content is also very low, almost uniform (mean 0.2 wt%) and is of marine origin. This suggests a well-oxygenated bottom water environment during the past ∼ 1100ka. Our data suggest that during ∼ 1100 ka and ∼ 400 ka siliceous productivity was lower, complimented by higher supply of terrigenous material mostly derived from the metasedimentary rocks of High Himalayan crystalline. However, during the last ∼ 400 ka, siliceous productivity increased with substantial reduction in the terrigenous sediment supply. The results suggest that intensity of Himalayan weathering, erosion associated with monsoons was comparatively higher prior to 400 ka. Manganese, Ba, Cu, Ni, Zn, and Co have around 90% of their supply from noncrustal (excess) source and their burial to seafloor remained unaffected throughout the past ∼ 1100 ka.  相似文献   
4.
Sinking particles were collected using time-series sediment traps deployed at 350 and 20 mab at Site SB (34° 58.5’N, 139° 20.9’E, 1544 m depth) near the center of Sagami Bay, off Japan with high time resolutions of 5-8 days (March 1997 to August 1998) and 3-4.5 days (March 1998 to August 1998), respectively. The major components (CaCO3, OM, opal, and clay) of these sinking particles and surface bottom sediments were determined using a stepwise leaching method combined with gravimetry. Average total mass fluxes were 1480, 5560 and 3068 mg/m2/year at 350 mab, at 20 mab, and in the surface sediments, respectively, indicating an enhanced collection of sinking particles at 20 mab. Clay was the dominant component and biogenic components (opal+OM+CaCO3) were dominated mainly by opal and secondly by OM. On average, opal and CaCO3 contents decreased gradually as clay content increased with increasing depth from 350 mab-20 mab and in the surface sediments, indicating dissolution of opal and CaCO3 through sinking, rebound, resuspension or sedimentation processes. Thirteen total mass flux peaks at 17--40-day intervals were observed at 350 mab during the period from March 1997 to August 1998 except for winter, while eight peaks were observed at 20 mab for the period from March 1998 to August 1998. Two types of total mass peaks can be distinguished: one with a clear increase in biogenic flux (opal+OM+CaCO3) and little or no increase in clay flux and termed a bloom type (B-type), and the other with a clear increase in clay flux, little increase in biogenic flux and termed a resuspension type (R-type). Some R-type peaks, but not all, coincided with total mass flux peaks observed at the mouth of Tokyo Bay and suggested the possibility of the effect of particulate materials transported from Tokyo Bay to site SB. The enormously large peak observed at 20 mab in late May 1998 and that at 350 mab in early June 1998 were considered to be due to some physical perturbations from an earthquake swarm near site SB during the period from April to June 1998. The 17--40-day periodicity was associated clearly with the change in biogenic flux dominated by opal flux and is thought to reflect the periodicity of biological productivity dominated by diatoms in the euphotic zone of Sagami Bay.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号