首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   6篇
地质学   1篇
海洋学   18篇
天文学   1篇
自然地理   4篇
  2023年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2013年   1篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1997年   1篇
  1983年   1篇
  1978年   1篇
  1967年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Multi-scale variability of beach profiles at Duck: A wavelet analysis   总被引:3,自引:0,他引:3  
Beach profiles have been observed to change over a range of spatial and temporal scales; however techniques for quantifying this variability have not been fully established. In this paper, a wavelet technique is introduced as a method to study the multi-scale variability of beach profiles. The beach profile data comprising a 22-year time series surveyed at the US Army Corps of Civil Engineers Field Research Facility (FRF) at Duck are analysed using the adapted maximal overlap discrete wavelet transform (AMODWT). The analysis successfully identifies strong local features in the variability of beach profiles in time and space separately that cannot be isolated by traditional statistical methods. The analysis of spatial wavelet variances provides a new means of investigating the depth of closure. Analysis of variances by temporal scales shows that the combined effects of several temporal scales with one or two dominant scales can be seen at particular points across profiles whilst the dominant temporal scales are different at different portions of the profiles. The method allows for the extremely nonstationary behaviour of beach profile to be analysed into separate frequency bands that can facilitate the interpretation of morphological changes in terms of physical processes.  相似文献   
2.
A data-driven model has been developed to analyse the long-term evolution of a sandbank system and to make ensemble predictions in a period of 8 years. The method uses a combination of empirical orthogonal function (EOF) analysis, (to define spatial and temporal patterns of variability), jack-knife resampling, (to generate an ensemble of EOFs), a causal auto-regression technique, (to extrapolate the temporal eigenfunctions), and straightforward statistical analysis of the resulting ensemble of predictions to determine a ‘forecast’ and associated uncertainty. The methodology has been applied to a very demanding site which includes a curved shoreline and a group of mobile nearshore sandbanks. The site is on the eastern coast of the UK and includes the Great Yarmouth sandbanks and neighbouring shoreline. A sequence of 33 high quality historical survey charts reaching back to 1848 have been used to analyse the patterns and to predict morphological evolution of the sandbank system. The forecasts demonstrate an improved skill relative to an assumption of persistence, but suffer in locations where there are propagating features in the morphology that are not well-described by EOFs.  相似文献   
3.
This paper presents a new framework for probabilistic modelling of long-term beach evolution in the vicinity of detached breakwaters. The study focuses on the key physical processes contributing to beach variability over a range of spatial and temporal scales. Based on a one-line model, the framework is enhanced with sophisticated solutions for beach-wave-structure interaction, diffraction together with a treatment of varying tide level. The sediment transport rate is calibrated at regional and local levels using data from bespoke field campaigns and site-specific coefficients are proposed. Monte Carlo simulation is conducted for long-term shoreline simulation under a sequence of time varying sequence of waves, currents and tidal levels. The results of the Monte Carlo simulation give an insight into the statistical characteristics of beach behaviour within the defence system. In particular, regions within the scheme that are relatively stable and those that exhibit greater natural fluctuations are identified.  相似文献   
4.
Automated threshold selection methods for extreme wave analysis   总被引:2,自引:0,他引:2  
The study of the extreme values of a variable such as wave height is very important in flood risk assessment and coastal design. Often values above a sufficiently large threshold can be modelled using the Generalized Pareto Distribution, the parameters of which are estimated using maximum likelihood. There are several popular empirical techniques for choosing a suitable threshold, but these require the subjective interpretation of plots by the user.In this paper we present a pragmatic automated, simple and computationally inexpensive threshold selection method based on the distribution of the difference of parameter estimates when the threshold is changed, and apply it to a published rainfall and a new wave height data set. We assess the effect of the uncertainty associated with our threshold selection technique on return level estimation by using the bootstrap procedure. We illustrate the effectiveness of our methodology by a simulation study and compare it with the approach used in the JOINSEA software. In addition, we present an extension that allows the threshold selected to depend on the value of a covariate such as the cosine of wave direction.  相似文献   
5.
Measuring and forecasting recruitment are central to the understanding and management of fish stocks. Kainge et al. (2013) studied the effect of spawning stock size and environmental fluctuations on the recruitment levels of the Cape hake Merluccius capensis in Namibia. However, their study contains some flaws that undermine the conclusion that Cape hake recruitment is under the influence of upwelling in summer. Until those flaws are properly addressed, this conclusion, in our view, should be treated with caution.  相似文献   
6.
In this paper, we investigate changes in the wave climate of the west-European shelf seas under global warming scenarios. In particular, climate change wind fields corresponding to the present (control) time-slice 1961–2000 and the future (scenario) time-slice 2061–2100 are used to drive a wave generation model to produce equivalent control and scenario wave climate. Yearly and seasonal statistics of the scenario wave climates are compared individually to the corresponding control wave climate to identify relative changes of statistical significance between present and future extreme and prevailing wave heights. Using global, regional and linked global–regional wind forcing over a set of nested computational domains, this paper further demonstrates the sensitivity of the results to the resolution and coverage of the forcing. It suggests that the use of combined forcing from linked global and regional climate models of typical resolution and coverage is a good option for the investigation of relative wave changes in the region of interest of this study. Coarse resolution global forcing alone leads to very similar results over regions that are highly exposed to the Atlantic Ocean. In contrast, fine resolution regional forcing alone is shown to be insufficient for exploring wave climate changes over the western European waters because of its limited coverage. Results obtained with the combined global–regional wind forcing showed some consistency between scenarios. In general, it was shown that mean and extreme wave heights will increase in the future only in winter and only in the southwest of UK and west of France, north of about 44–45° N. Otherwise, wave heights are projected to decrease, especially in summer. Nevertheless, this decrease is dominated by local wind waves whilst swell is found to increase. Only in spring do both swell and local wind waves decrease in average height.  相似文献   
7.
Bull sharks Carcharhinus leucas are common along the coast of Reunion Island (South-West Indian Ocean) and were suspected to aggregate in the vicinity of an aquaculture farm in Saint-Paul Bay on the west coast. In order to understand the behaviour and interaction of bull sharks near aquaculture cages at Saint-Paul Bay, we deployed an experimental unbaited stationary video camera. From 175 hours of recording during daylight hours from March to April 2012, eight individual female bull sharks (seven adults and one immature) were identified based on their natural markings. These sharks were resighted between 3 and 45 times. Residency analysis revealed site attachment under the aquaculture cages for at least three individuals over the course of the study. Recorded behaviours included intraspecific social interactions such as synchronised swimming. Social interactions and relatively strong paired associations for two pairs of females suggest some level of sociality among bull sharks around Reunion Island. Overall, our results demonstrate the utility of unbaited video systems to monitor the behaviour of adult coastal sharks.  相似文献   
8.
Fluid migration pathways in the subsurface are heavily influenced by pre‐existing faults. Although studies of active fluid‐escape structures can provide insights into the relationships between faults and fluid flow, they cannot fully constrain the geometry of and controls on the contemporaneous subsurface fluid flow pathways. We use 3D seismic reflection data from offshore NW Australia to map 121 ancient hydrothermal vents, likely related to magmatic activity, and a normal fault array considered to form fluid pathways. The buried vents consist of craters up to 264 m deep, which host a mound of disaggregated sedimentary material up to 518 m thick. There is a correlation between vent alignment and underlying fault traces. Seismic‐stratigraphic observations and fault kinematic analyses reveal that the vents were emplaced on an intra‐Tithonian seabed in response to the explosive release of fluids hosted within the fault array. We speculate that during the Late Jurassic the convex‐upwards morphology of the upper tip‐lines of individual faults acted to channelize ascending fluids and control where fluid expulsion and vent formation occurred. This contribution highlights the usefulness of 3D seismic reflection data to constraining normal fault‐controlled subsurface fluid flow.  相似文献   
9.
ABSTRACT

Reductionist thinking will no longer suffice to address contemporary, complex challenges that defy sectoral, national, or disciplinary boundaries. Furthermore, lessons learned from the past cannot be confidently used to predict outcomes or guide future actions. The authors propose that the confluence of a number of technology and social disruptors presents a pivotal moment in history to enable real time, accelerated, and integrated action that can adequately support a ‘future earth’ through transformational solutions. Building on more than a decade of dialogues hosted by the International Society for Digital Earth (ISDE), and evolving a briefing note presented to delegates of Pivotal 2015, the paper presents an emergent context for collectively addressing spatial information, sustainable development, and good governance through three guiding principles for enabling prosperous living in the twenty-first century. These are: (1) open data, (2) real-world context, and (3) informed visualization for decision support. The paper synthesizes an interdisciplinary dialogue to create a credible and positive future vision of collaborative and transparent action for the betterment of humanity and planet. It is intended that these Pivotal Principles can be used as an elegant framework for action toward the Digital Earth vision, across local, regional, and international communities and organizations.  相似文献   
10.
In an earlier paper a particular discrete wavelet transform (DWT) was used to study the complex variation of beach profile changes. However, use of the DWT requires that the sequence of spatial and temporal resolution is fixed as a dyadic sequence, which means that the variability over longer intervals is not characterised well. Here we introduce the discrete wavelet packet transform (DWPT) that uses an adaptive scaling to partition the data variance, according to an entropy cost function. The advantages of this approach are demonstrated by its application to the study of temporal variability of a 22 year record of beach profile data from the Field Research Facility (FRF) at Duck, North Carolina, USA. Time series of beach elevations at three locations across a particular profile are investigated in detail. We conclude that the DWPT provides a superior analysis of non-stationary time series to that of the DWT, with improved resolution of the scale intervals of the variability. The beach elevation around the shoreline is shown to respond at both sub-annual and interannual scales, but variability at an annual scale is weak. Moving seaward into deeper water, the variance is partitioned into fewer and longer scales. It is confirmed that elevation changes around the inner bar at Duck exhibit a strong interannual variation consistent with Plant et al. (Plant, N.G., Holman, R.A. and Freilich, M.H., 1999. A simple model for interannual sandbar behaviour. Journal of Geophysical Research 104(C7), 15755–15776). Around 23% of the variance around the inner bar is explained at the temporal scale of 64–128 months, which is consistent with the bar behaviour of 6 years found by Ruessink et al. (Ruessink, B. G., Wijnberg, K. M., Holman, R. A., Kuriyama, Y. and Van Enckevort, I. M. J., 2003. Intersite comparison of interannual nearshore bar behaviour. Journal of Geophysical Research, 108 (C8): 1–12). A significant new finding is, however, that about 26% of the variance is attributable to temporal scales of 16–21.3 months. Reconstruction of the wavelet packet components for individual temporal scales is shown to provide a means for identifying the impact and scale of non-stationary events, such as storms, on the beach response. This provides further information that can be used to interpret the morphological changes in terms of the forcing processes and also serves to inform morphodynamic modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号