首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   1篇
地质学   3篇
海洋学   5篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2007年   3篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The results of continuous seismic profiling thermodynamics performed in the northern part of the Japan Basin in the region of the Tarasov Rise and the data of a micropaleontological examination of the diatom remains encountered in the sediment samples from the rise and continental slope are presented. In the area studied, the topography of the acoustic basement features a vast rise (plateau) buried under the sedimentary cover outlined by the depth contour 5.8 s. The plateau has a relatively smooth top surface crossed by a series of rises of the acoustic basement. The two largest rises are represented by the ridges of the Tarasov Rise. The plateau is separated from the continental slope by a depression in the acoustic basement with a depth up to 6.8 s. From the end of the Middle Miocene up to the beginning of the Paleocene, the region of the plateau represented an area of active volcanism; it coincided in time with the stage of subsidence of the floor of the acoustic basement depression. At the end of the Late Miocene, the ridges of the Tarasov Rise started to sink. In the Pliocene, this process accelerated, and, at the beginning of the Pleistocene, it stopped. In the Middle Miocene-Early Pleistocene time, the portion of the continental slope adjacent to the plateau remained stable and suffered no significant vertical movements.  相似文献   
2.
Karnaukh  V. N.  Sergeev  A. F.  Lobanov  V. B.  Tishcenko  P. Ya. 《Oceanology》2019,59(6):995-998
Oceanology - During cruise 73 of the R/V Professor Gagarinskiy and cruise 53 of the R/V Akademik Oparin, oceanographic studies of the Sea of Japan and Sea of Okhotsk and the Northwest Pacific were...  相似文献   
3.
The results of the complex study of the sedimentary cover (continuous seismic profiling and diatom analysis) in the northeastern part of the Sea of Japan, including the Bogorov Rise, the adjacent part of the Japan Basin, and the continental slope, are presented. Two varied-age complexes were distinguished in the sedimentary cover of Primorye’s continental slope, namely, the Middle Miocene and Late Miocene-Pleistocene; these complexes were formed in a stable tectonic environment with no significant vertical movements. The depression in the acoustic basement is located along the continental slope and it is divided from the Japan Basin by a group of volcanic structures, the most uplifted part of which forms the Bogorov Rise. The depression was formed, probably, before the Middle Miocene. In the Middle Miocene, the Bogorov Rise was already at the depths close to the modern ones. In the sedimentary cover near the Bogorov Rise, buried zones were found, which probably were channels for gas transportation in the pre-Pleistocene. Deformations of sediments that occurred in the beginning of the Pleistocene are established in the basin.  相似文献   
4.
5.
This communication is dedicated to the investigation history and naming of the undersea morphostructures of the Sea of Japan for the last 50 years. Many of them were first described and studied during long-term geological-geophysical investigations in this basin carried out by Russian scientists. The analysis of 60 names of its undersea feature names revealed that only approximately half of them are cited in the GEBCO Gazetteer some of the undersea morphostructures are known under two or more names, the origin of their names is unknown, or their names were chosen voluntarily. For maintaining the priority of Russian investigations, the nomenclature and names of the undersea features should be adjusted in accordance with the national and international principles and regulations.  相似文献   
6.
The results of the cruise of R/V Akademik M.A. Lavrentiev conducted by the Pacific Institute of Oceanology, Far East Division of the Russian Academy of Sciences and the Shirshov Institute of Oceanology, Russian Academy of Sciences in August to September 2005 are considered. The aim of the works was to specify the tectonic structure, seismogenic potential, and tsunamigenic hazard of the central segment of the Kuril Island Arc. The complex studies involved single-channel seismic profiling, gravimetry, magnetometry, detailed bathymetry, dredge sampling of sea-floor rocks and sediments, and gas geochemistry. Geophysical and geological data are reported. It was demonstrated that the target area is an active tectonic destruction zone, the zone boundaries were outlined, and the main internal structural and compositional heterogeneities were identified.  相似文献   
7.
The results of a single channel seismic reflection survey and of a micropaleontological examination of diatom remains in bottom sediment samples on the shelf and continental slope of the Peter the Great Bay area are presented. The composition and age of the sedimentary layer were studied using integrated seismic, micropaleontological and geological data. The continental slope was formed not later than at the beginning of the Early Miocene. The slope is covered with Middle Miocene-Pliocene sediments. The sedimentary thickness on most of the slope is 0.2–0.4 s. The maximum thickness (0.8–1.0 s) is observed within the areas of submarine canyons and valleys. The thickness of the Early Miocene-Pliocene sediments on the shelf is 0.2–0.4 s. On the shelf break and in a southwest-trending trough of the acoustic basement, it increases up to 1.0 s. Two uncomformities were identified in the sediments of the shelf area. The proposed age of the upper uncomformity is 10.0–8.5 My B.P.; it represents the result of a global sea level fall. The age of the lower uncomformity is unknown.  相似文献   
8.
Abstract   The Kurile Basin in the Okhotsk Sea, northwestern Pacific, is a back-arc basin located behind the Kurile Island Arc. It is underlain by oceanic crust and its origin has been attributed to back-arc spreading. Two models for the opening of the Kurile Basin exist, for which the spreading axis is oriented northeast–southwest and northwest–southeast, respectively. New data are presented here on the morphostructure of the slope of the northern Kurile Basin and of the central Kurile Basin which support a strike of the spreading axis in the latter direction. Bathymetric as well as single-channel and multichannel seismic reflection data demonstrate the existence of dominant northwest-striking normal faults on the northern slope of the Kurile Basin. In the central Kurile Basin a basement rise striking north-northwest–south-southeast (here named the Sakura Rise) was mapped. The rise morphology has the distinct imprint of a rift structure with symmetrical volcanic edifices on the rise axis and faulted blocks that tilt in opposite directions on the flanks. These data suggest that the Kurile Basin opened in a northeast–southwest direction. In the generally accepted plate tectonic reconstructions, northwest–southeast spreading associated with dextral strike–slip along the north–south-striking shear zone of Sakhalin and Hokkaido islands has been assumed. In the present model, spreading in the Kurile Basin was presumably connected with dextral displacement along a northeast-striking shear zone on the southern segment of the Okhotsk Sea.  相似文献   
9.
On the basis of the analysis of published data and in the course of the authors’ long-term geochemical and acoustic surveys performed in 1995–2011 on the East Siberian shelf (ESS) and aimed to research the role of the Arctic shelf in the processes of massive methane outbursts into the Earth’s atmosphere, some crucially new results were obtained. A number of hypotheses were proposed concerning the qualitative and quantitative characterization of the scale of this phenomenon. The ESS is a powerful supplier of methane to the atmosphere owing to the continued degradation of the submarine permafrost, which causes the destruction of gas hydrates. The emission of methane in several areas of the ESS is massive to the extent that growth in the methane concentrations in the atmosphere to values capable of causing a considerable and even catastrophic warning on the Earth is possible. The seismic data were compared to those of the drilling from ice performed first by the authors in 2011 in the southeastern part of the Laptev Sea to a depth of 65 m from the ice surface. This made it possible to reveal some new factors explaining the observed massive methane bursts out of the bottom sediments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号