首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   2篇
地质学   2篇
海洋学   4篇
天文学   25篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有31条查询结果,搜索用时 46 毫秒
1.
Jack J. Lissauer 《Icarus》1985,62(3):433-447
The surface mass density profiles at four locations within Saturn's rings are calculated using Voyager spacecraft images of spiral bending waves. Bending waves are vertical corrugations in Saturn's rings which are excited at vertical resonances of a moon, e.g., Mimas, whose orbit is inclined with respect to the mean plane of the rings. Bending waves propagate toward Saturn by virtue of the rings' self-gravity; their wavelength depends on the local surface mass density of the rings. Observations of bending waves can thus be used to determine the surface density in regions of Saturn's rings near vertical resonances. The average surface density of the outer B ring near Mimas' 4:2 inner vertical resonance is 54 ± 10 g cm?2. Surface density in this region probably varies by ~ 30% over radial length scales of tens of kilometers; and irregular radial structure is present on similar length scales in this region. Surface densities ranging from 24 g cm?2 to 45 g cm?2 are found in the A ring. Small scale variations in surface density are not seen in the A ring, consistent with its more uniform optical appearance.  相似文献   
2.
Wind erosion causes serious problems and considerable threat in most regions of the world. Vegetation on the ground has an important role in controlling wind erosion by covering soil surface and absorbing wind momentum. A set of wind tunnel experiments was performed to quantitatively examine the effect of canopy structure on wind movement. Artificial plastic vegetations with different porosity and canopy shape were introduced as the model canopy. Normalized roughness length (Z 0/H) and shear velocity ratio (R) were analyzed as a function of roughness density (λ). Experiments showed that Z 0/H increases and R decreases as λ reaches a maximum value, λ max, while the values of Z 0/H and R showed little change with λ value beyond as λ max.  相似文献   
3.
We have numerically integrated the orbits of ejecta from Telesto and Calypso, the two small Trojan companions of Saturn’s major satellite Tethys. Ejecta were launched with speeds comparable to or exceeding their parent’s escape velocity, consistent with impacts into regolith surfaces. We find that the fates of ejecta fall into several distinct categories, depending on both the speed and direction of launch.The slowest ejecta follow suborbital trajectories and re-impact their source moon in less than one day. Slightly faster debris barely escape their parent’s Hill sphere and are confined to tadpole orbits, librating about Tethys’ triangular Lagrange points L4 (leading, near Telesto) or L5 (trailing, near Calypso) with nearly the same orbital semi-major axis as Tethys, Telesto, and Calypso. These ejecta too eventually re-impact their source moon, but with a median lifetime of a few dozen years. Those which re-impact within the first 10 years or so have lifetimes near integer multiples of 348.6 days (half the tadpole period).Still faster debris with azimuthal velocity components ?10 m/s enter horseshoe orbits which enclose both L4 and L5 as well as L3, but which avoid Tethys and its Hill sphere. These ejecta impact either Telesto or Calypso at comparable rates, with median lifetimes of several thousand years. However, they cannot reach Tethys itself; only the fastest ejecta, with azimuthal velocities ?40 m/s, achieve “passing orbits” which are able to encounter Tethys. Tethys accretes most of these ejecta within several years, but some 1% of them are scattered either inward to hit Enceladus or outward to strike Dione, over timescales on the order of a few hundred years.  相似文献   
4.
Green-lipped mussels (Perna canaliculus) formed extensive reefs on soft sediments in sheltered embayments around northern New Zealand until overfishing and/or increased sediment input caused their virtual disappearance by 1980. To determine the role of mussel reefs as habitat for other animals, we located remnant soft-sediment reefs in five locations and compared the density, biomass, productivity and composition of mobile macroinvertebrate communities, and the density of small fishes associated with mussels, with fauna in the surrounding soft sediments. The mussel reefs had a distinct assemblage of macroinvertebrates, which had 3.5 times the density, 3.4 times the biomass and 3.5 times the productivity of surrounding areas. The density of small fishes was 13.7 times higher than in surrounding areas. These results show that soft-sediment mussel reefs support an abundant and productive fauna, highlighting the probable large loss of productivity associated with the historical decline in mussel habitat and the consequent desirability of restoration efforts.  相似文献   
5.
The Taiwanese‐American Occultation Survey (TAOS) seeks to determine the number and size spectrum for small (∼3 km) bodies in the Kuiper Belt. This will be accomplished by searching for the brief occultations of bright stars (R ∼ 14) by these objects. We have designed and built a special purpose photometric monitoring system for this purpose. TAOS comprises four 50 cm telescopes, each equipped with a 2048 × 2048 pixel CCD camera, in a compact array located in the central highlands of Taiwan. TAOS will monitor up to 2 000 stars at 5 Hz. The system went into scientific operation in the autumn of 2005. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
6.
We model the growth of Jupiter via core nucleated accretion, applying constraints from hydrodynamical processes that result from the disk-planet interaction. We compute the planet's internal structure using a well tested planetary formation code that is based upon a Henyey-type stellar evolution code. The planet's interactions with the protoplanetary disk are calculated using 3-D hydrodynamic simulations. Previous models of Jupiter's growth have taken the radius of the planet to be approximately one Hill sphere radius, RH. However, 3-D hydrodynamic simulations show that only gas within ∼0.25RH remains bound to the planet, with the more distant gas eventually participating in the shear flow of the protoplanetary disk. Therefore in our new simulations, the planet's outer boundary is placed at the location where gas has the thermal energy to reach the portion of the flow not bound to the planet. We find that the smaller radius increases the time required for planetary growth by ∼5%. Thermal pressure limits the rate at which a planet less than a few dozen times as massive as Earth can accumulate gas from the protoplanetary disk, whereas hydrodynamics regulates the growth rate for more massive planets. Within a moderately viscous disk, the accretion rate peaks when the planet's mass is about equal to the mass of Saturn. In a less viscous disk hydrodynamical limits to accretion are smaller, and the accretion rate peaks at lower mass. Observations suggest that the typical lifetime of massive disks around young stellar objects is ∼3 Myr. To account for the dissipation of such disks, we perform some of our simulations of Jupiter's growth within a disk whose surface gas density decreases on this timescale. In all of the cases that we simulate, the planet's effective radiating temperature rises to well above 1000 K soon after hydrodynamic limits begin to control the rate of gas accretion and the planet's distended envelope begins to contract. According to our simulations, proto-Jupiter's distended and thermally-supported envelope was too small to capture the planet's current retinue of irregular satellites as advocated by Pollack et al. [Pollack, J.B., Burns, J.A., Tauber, M.E., 1979. Icarus 37, 587-611].  相似文献   
7.
Sedna is the first inner Oort cloud object to be discovered. Its dynamical origin remains unclear, and a possible mechanism is considered here. We investigate the parameter space of a hypothetical solar companion which could adiabatically detach the perihelion of a Neptune-dominated TNO with a Sedna-like semimajor axis. Demanding that the TNO’s maximum value of osculating perihelion exceed Sedna’s observed value of 76 AU, we find that the companion’s mass and orbital parameters (m c , a c , q c , Q c , i c ) are restricted to $$m_c>rapprox 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{Q_c}{7850\hbox{ AU}} \frac{q_c}{7850\hbox{ AU}}\right)^{3/2}$$ during the epoch of strongest perturbations. The ecliptic inclination of the companion should be in the range $45{\deg}\lessapprox i_c\lessapprox 135{\deg}$ if the TNO is to retain a small inclination while its perihelion is increased. We also consider the circumstances where the minimum value of osculating perihelion would pass the object to the dynamical dominance of Saturn and Jupiter, if allowed. It has previously been argued that an overpopulated band of outer Oort cloud comets with an anomalous distribution of orbital elements could be produced by a solar companion with present parameter values $$m_c\approx 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{9000\hbox{ AU}}{a_c}\right)^{1/2}.$$ If the same hypothetical object is responsible for both observations, then it is likely recorded in the IRAS and possibly the 2MASS databases.  相似文献   
8.
Here we show preliminary calculations of the cooling and contraction of a 2 MJ planet. These calculations, which are being extended to 1–10 MJ, differ from other published “cooling tracks” in that they include a core accretion‐gas capture formation scenario, the leading theory for the formation of gas giant planets.We find that the initial post‐accretionary intrinsic luminosity of the planet is ∼3 times less than previously published models which use arbitrary initial conditions. These differences last a few tens of millions of years. Young giant planets are intrinsically fainter than has been previously appreciated. We also discuss how uncertainties in atmospheric chemistry and the duration of the formation time of giant planets lead to challenges in deriving planetary physical properties from comparison with tabulated model values. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
9.
Ejecta from Saturn's moon Hyperion are subject to powerful perturbations from nearby Titan, which control their ultimate fate. We have performed numerical integrations to simulate a simplified system consisting of Saturn (including optical flattening as well as dynamical oblateness), its main ring system (treated as a massless flat annulus), the moons Tethys, Dione, Titan, Hyperion, and Iapetus, and the Sun (treated simply as a massive satellite). At several different points in Hyperion's orbit, 1050 massless particles, more or less evenly distributed over latitude and longitude, were ejected radially outward from 1 km above Hyperion's mean radius at speeds 10% faster than escape speed from Hyperion. Most of these particles were removed within the first few thousand years, but ∼3% of them survived the entire 100,000-year duration of the simulations. Ejecta from Hyperion are much more widely scattered than previously thought, and can cross the orbits of all of Saturn's satellites. About 9% of all the particles escaped from the saturnian system, but Titan accreted ∼78% of the total, while Hyperion reaccreted only ∼5%. This low efficiency of reaccretion may help to account for Hyperion's small size and rugged shape. Only ∼1% of all the particles hit other satellites, and another ∼1% impacted Saturn itself, while ∼3% of them struck its main rings. The high proportion of impacts into Saturn's rings is surprising; these collisions show a broad decline in impact speed with time, suggesting that Hyperion ejecta gradually spread inwards. Additional simulations were used to investigate the dependence of ejecta evolution on launch speed, the mass of Hyperion, and the presence of the Sun. In general, the wide distribution of ejecta from Hyperion suggests that it does contribute to “Population II” craters on the inner satellites of Saturn. Ejecta which escape from a satellite into temporary orbit about its planet, but later reimpact into the same moon or another one produce “poltorary” impacts, intermediate in character between primary and secondary impacts. It may be possible to distinguish poltorary craters from primary and secondary craters on the basis of morphology.  相似文献   
10.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号