首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52589篇
  免费   21337篇
  国内免费   45862篇
测绘学   4742篇
大气科学   23950篇
地球物理   16496篇
地质学   44098篇
海洋学   17740篇
天文学   1588篇
综合类   6332篇
自然地理   4842篇
  2024年   239篇
  2023年   641篇
  2022年   1556篇
  2021年   2012篇
  2020年   2828篇
  2019年   6245篇
  2018年   6584篇
  2017年   6145篇
  2016年   6370篇
  2015年   5756篇
  2014年   5391篇
  2013年   6038篇
  2012年   5806篇
  2011年   5638篇
  2010年   5475篇
  2009年   4752篇
  2008年   3962篇
  2007年   3880篇
  2006年   3442篇
  2005年   3196篇
  2004年   3252篇
  2003年   2981篇
  2002年   2690篇
  2001年   2481篇
  2000年   2144篇
  1999年   2300篇
  1998年   2201篇
  1997年   2205篇
  1996年   1807篇
  1995年   1711篇
  1994年   1542篇
  1993年   1436篇
  1992年   1203篇
  1991年   889篇
  1990年   836篇
  1989年   715篇
  1988年   616篇
  1987年   458篇
  1986年   374篇
  1985年   298篇
  1984年   311篇
  1983年   181篇
  1982年   217篇
  1981年   161篇
  1980年   123篇
  1979年   122篇
  1978年   54篇
  1977年   46篇
  1971年   53篇
  1970年   44篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
2.
The geodynamic mechanism of the late Early Cretaceous magmatic flare‐up in the collisional zone between the Lhasa and Qiangtang terranes in Tibet is controversial because of a scarcity of robust evidence. To address this problem, we report geochronological, geochemical and Hf isotopic data for the newly discovered Gufeng gabbros from the Duolong Cu–Au mineral district of the western Bangong–Nujiang Suture Zone (BNSZ). The gabbro samples, dated at 126.3 ± 1.8 Ma, show geochemical similarities to typical ocean island basalt (OIB) and have positive εHf(t) values of +3.3 to +6.9. The gabbros were generated by decompression melting of deep upwelling asthenosphere. This event is best explained by slab break‐off and the resultant development of a slab window beneath central Tibet.  相似文献   
3.
Reservoirs of lowland floodplain rivers with eutrophic backgrounds cause variations in the hydrological and hydraulic conditions of estuaries and low-dam reservoir areas, which can promote planktonic algae to proliferate and algal bloom outbreaks. Understanding the ecological effects of variations in hydrological and hydraulic processes in lowland rivers is important for algal bloom control. In this study, the middle and lower reaches of the Han River, China, a typical regulated lowland river with a eutrophic background, are selected. Based on the effect of hydrological and hydraulic variability on algal blooms, a hydrological management strategy for river algal bloom control is proposed. The results showed that (a) differences in river morphology and background nutrient levels cause significant differences in the critical threshold flow velocities for algal bloom outbreaks between natural river and low-dam reservoir sections; there is no uniform threshold flow velocity for algal bloom control. (b) There are significant differences in the river hydrological/hydraulic conditions between years with and without algal blooms. The average river flow, water level and velocity in years with algal blooms are significantly lower than those in years without algal blooms. (c) For different river sections where algal blooms occur and to meet the threshold flow velocities, the joint operation of cascade reservoirs and diversion projects is an effective method to prevent and control algal blooms in regulated lowland rivers. This study is expected to deepen our understanding of the ecological significance of special hydrological processes and guide algal bloom management in regulated lowland rivers.  相似文献   
4.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
5.
黄子义 《地理教学》2020,(3):62-64,52
随着教学手段和教学方法的现代化,信息技术与课程整合正成为教育改革的研究热点。文章以万维望远镜(WWT)平台为教学媒体,以ASSURE模式为教学设计的理论依据,设计并构建用以指导天文教学准备、实施与评价的教学模式,并将该模式应用于“四季星空”的教学案例中,使用基于信息技术的互动分析编码系统和学生课程反馈调查对教学效果进行分析和评价。研究表明,万维望远镜的使用可以降低教师言语比率,改变传统天文教学中以讲授式为主的教学方式。它适合起点能力较高、对新知识和新技能掌握能力较强的学生,能提高其学习兴趣和积极性,激发其探索宇宙的兴趣,有助于培养学生的科学素养。  相似文献   
6.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
7.
Soil salinization, caused by salt migration and accumulation underneath the soil surface, will corrode structures. To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions, a mathematical model consisting of a series of theoretical equations is briefly presented. The filling effect of precipitated salts on tortuosity factor and evaporation rate are taken into account in relevant equations. Besides, a transition equation to link the solute transport equation before and after salt precipitation is proposed. Meanwhile, a new relative humidity equation deduced from Pitzer ions model is used to modify the vapor transport flux equation. The results show that the calculated values are in good agreement with the published experimental data, especially for the simulation of volume water content and evaporation rate of Toyoura sand, which confirm the reliability and applicability of the proposed model.  相似文献   
8.
1 INTRODUCTION Blazars, including BL Lac objects, highly polarized and optically violently variable quasars,and flat-spectrum radio quasars (FSRQs), are characterized by highly variable non-thermalemission which dominates their characteristics from radio to y-ray bands. The mechanismbelieved to be responsible for their broadband emission is synchrotron radiation followed by in-verse Compton (IC) scattering at higher energies (e.g. Blandford & Konigl 1979). Relativisticbeaming of a jet…  相似文献   
9.
青藏高原隆升的非线性动态有限元仿真研究   总被引:7,自引:4,他引:3  
根据青藏高原的地质特征建立分析模型,采用3维动态有限元方法,在计算仿真板块速度场的基础上,计算在青藏高原的隆升过程中该地区地壳岩石的等效应力和位移随时间的变化,计算仿真得到的速度场与1998年GPS观测的速度场吻合良好;与过去一贯的假设相反,计算结果反映出地壳应力场不是静态的,而是此起彼伏,不断变化的,应力值最大且变化最剧烈的地区在克什米尔地区、鄂尔多斯地区和鲜水河-小江断裂带,与地震多发区域吻合。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号