首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   11篇
海洋学   1篇
自然地理   7篇
  2013年   1篇
  2011年   1篇
  2008年   2篇
  2006年   2篇
  2000年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   3篇
  1991年   1篇
  1988年   2篇
  1984年   1篇
  1982年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
2.
Evaluation of Ontario's Environmental Farm Plan (EFP) scheme, launched in 1993, provides an opportunity for comparisons with agri-environmental measures instituted in the European Union and other parts of North America. The EFP has a strong 'bottom-up' dimension in that it is farmers' organizations that have been central both to the scheme's instigation and to its ongoing management. This has affected the nature of the actions taken by individual farmers participating in the scheme. These actions are reviewed, especially in terms of the participants' attitudes towards stewardship of the land, environmental outcomes, cross-compliance measures, barriers to participation and the role of statutory regulation. Some contrasts are drawn with the greater 'top-down' controls exerted in several EU agri-environment schemes, with the latter's promotion of extensification and the changing role of farmers as 'producers of countryside' in a multi-functional agricultural system. The diffusion of EFP schemes throughout Canada is noted and is cited as confirming the maintenance of fundamentally different attitudes to the development of farm-based environmental actions compared with those adopted in the EU.  相似文献   
3.
Enthalpies of solution have been measured on a series of muscovite—paragonitemicas in 20.1% HF at 50C under isoperibolic conditions. Themolar enthalpy of formation of paragonite at 298 K, for whichno calorimetrically measured value is currently available, hasbeen determined to be –5937.5 (3) kJ. An inversion ofall calorimetric, volumetric and phase equilibrium data hasbeen performed, giving a range of mixing models compatible withmost experimental data. The following expressions of the mixingproperties of 2M1 micas for enthalpy (Hex) and volume (Vex)at pressures up to 10 kbar, forcing excess entropy (Sex) tobe zero and using a subregular mixing model are favoured: Hex(kJ) = [10.6+4.45(1–2Xms)]Xms(1–Xms) Vex(J/bar) = 0.452Xms(1–Xms). However, mixing models of higher order with asymmetric negativeSex are also possible. KEY WORDS: muscovite; paragonite; solvus; calorimetry; solid solution *Corresponding author.  相似文献   
4.
Facies distributions, stratal geometry and regional erosional bevelling surfaces in Upper Cretaceous (Cenomanian-Santonian) strata of the Alberta foreland basin are interpreted in terms of high-frequency (probably eustatic) relative changes in sea level, superimposed on longer-term basin-floor warping, related to episodic tectonic loading. Thick marine shales correspond to periods of rapid subsidence whereas thin but extensive strandplain sandstones record rapid progradation during slow subsidence. Westward-thickening wedges of coastal plain strata were deposited during initial downwarping of a near-horizontal strandplain, prior to marine transgression. Surfaces of erosional bevelling beneath which between 40 and >160m of strata have been removed extend at least 300 km from the present deformation front and are interpreted to reflect forebulge uplift in the east. Uplift appears to have lagged about 0.25-0.5 Myr behind the onset of accelerated loading. Thin marine sandstones which grade westward into mudstone are interpreted as material winnowed from the crest of the rising forebulge. Subsidence and/or westward migration of the forebulge allowed the sea to flood westward across the eastern flank of the eroded forebulge. The transgressive shoreface cut asymmetric notches which were later blanketed by marine shales which lap out from east to west. The two unconformities which embody the largest erosional vacuity are veneered locally with oolitic ironstone which accumulated in a shallow, sediment-starved setting on the crest of the forebulge. The consistent pattern of erosional bevelling and lap-out of transgressive shales might be interpreted as evidence that the forebulge migrated towards the thrust load over a period of <1 Myr.  相似文献   
5.
6.
Söderman, G.: Södra Finlands blocksänkor. Geografisk Tidsskrift, 82, 77–81, November 1. 1982.

Map analysis and field inventory show that there are about 20000 boulder depressions in Finland south of 64°N. The features are most common in blocky till areas close to fracture zones in the bedrock. The depressions range in altitude from above the highest shore-line down to 25–30 m above present sea-level. They are youngest in the NW part. Some depressions show surface patterns.

SAMMANDRAG

Blocksänkor är frostmarksformer med en huvudsakligen vertikal sortering som ett resultat av differentiell uppfrysning av blockrikt utgångsmaterial. De framställer inga klimatiska kriteria om utbildningstid och -förhållanden. Däremot här de till områden med sasängbetonad frostaktivitet, och om ej inskränkta till nedisade omräden, trots typiska fär dessa. Blocksänkorna är den mest utbredda och största frostmarksform inom den fennoskandiska skogsregionen i dag.  相似文献   
7.
Beijing is facing a huge challenge to manage the growth of its built-up area whilst also retaining both productive arable land and land for conservation purposes in order to simultaneously realize the three aims of economic development, protecting arable land and generating environmental improvements. Meanwhile, London, as a world city with more than 200 years of industrialization and urbanization, has accumulated rich theoretical and practical experiences for land use planning in a major urban area, such as the creation of Garden Cities, a designated Green Belt and New Towns. This paper firstly analyzes the main characteristics of the spatial distribution of the built-up area, arable land and conservation land in Beijing. Then, some of the key aspects of urban fringe planning in the London region are examined. Lastly, several implications from the experience of London are provided with respect to land-use planning for Beijing, concentrating on a re-appraisal of land-use functions around Beijing, measures to improve the green belt, the development of small towns to house rural-urban migrants and urban overspill, and effective implementation of land-use planning.  相似文献   
8.
Book reviewed in this article:
L. Eissmann: Pengladare Prozesse und Permafroststrukturen aus sechs Kalwiten des Quartlrs. Ein Beitrag zur Periglazial-geologie aus der Sicht des Saale-Elbe-Gebietes  相似文献   
9.
The Kaskapau Formation spans Late Cenomanian to Middle Turonian time and was deposited on a low‐gradient, shallow, storm‐dominated muddy ramp. Dense well log control, coupled with exposure on both proximal and distal margins of the basin allows mapping of sedimentary facies over about 35 000 km2. The studied portion of the Kaskapau Formation is a mudstone‐dominated wedge that thins from 700 m in the proximal foredeep to 50 m near the forebulge about 300 km distant. Regional flooding surfaces permit mapping of 28 allomembers, each of which represent an average of ca 125 kyr. More than 200 km from shore, calcareous silty claystone predominates, whereas 100 to 200 km offshore, mudstone and siltstone predominate. From about 30 to 100 km offshore, centimetre‐bedded very fine sandstone and mudstone record along‐shelf (SSE)‐directed storm‐generated geostrophic flows. Five to thirty kilometres from shore, decimetre‐bedded hummocky cross‐stratified fine sandstone and mudstone record strongly oscillatory, wave‐dominated flows whereas some gutter casts indicate shore‐oblique, apparently mostly unidirectional geostrophic flows. Nearshore facies are dominated by swaley cross‐stratified or intensely bioturbated clean fine sandstone, interpreted as recording, respectively, areas strongly and weakly affected by discharge from distributary mouths. Shoreface sandstones grade locally into river‐mouth conglomerates and sandstones, including conglomerate channel‐fills up to 15 m thick. Locally, brackish lagoonal shelly mudstones are present on the extreme western margin of the basin. There is no evidence for clinoform stratification, which indicates that the Kaskapau sea floor had extremely low relief, lacked a shelf‐slope break, and was probably nowhere more than a few tens of metres deep. The absence of clinoforms probably indicates a long‐term balance between rates of accommodation and sediment supply. Mud is interpreted to have been transported >250 km offshore in a sea‐bed nepheloid layer, repeatedly re‐suspended by storms. Fine‐grained sediment accumulated up to a ‘mud accommodation envelope’, perhaps only 20 to 40 m deep. Continuous re‐working of the sea floor by storms ensured that excess sediment was redistributed away from areas that had filled to the ‘accommodation envelope’, being deposited in areas of higher accommodation further down the transport path. The facies distributions and stratal geometry of the Kaskapau shelf strongly suggest that sedimentary facies, especially grain‐size, were related to distance from shore, not to water depth. As a result, the ‘100 to >300 m’ depth interpreted from calcareous claystone facies for the more central parts of the Interior Seaway, might be a significant overestimate.  相似文献   
10.
The Kaskapau and Cardium Formations span Late Cenomanian to Early Coniacian time and were deposited on a low‐gradient foredeep ramp. The studied portion of the Kaskapau Formation spans ca 3·5 Myr and forms a mudstone‐dominated wedge thinning from 700 to <50 m from SW to NE over ca 300 km. In contrast, the Cardium Formation spans about 2·1 Myr, is about 100 m thick, sandstone‐rich and broadly tabular. The Kaskapau and Cardium Formations are divided, respectively, into 28 and nine allomembers, each bounded by marine flooding surfaces. Kaskapau allomembers 1 to 7 show about 200 km of offlap from the forebulge, accompanied by progradation of thin sandstones from the eroded forebulge crest. In contrast, Kaskapau allomembers 8 to 28 and Cardium allomembers C1 to C9 show overall onlap onto the forebulge of about 350 km, and contain no forebulge‐derived sandstones. This broad pattern is interpreted as recording a latest Cenomanian pulse of tectonic loading which led to shoreline back‐step in the proximal foredeep and coeval uplift of the forebulge, leading to erosion. The advance of the sediment wedge after Kaskapau allomember 7 is attributed primarily to the isostatic effect of a distributed sediment load; the advance of the orogenic wedge had a subordinate effect on subsidence of the forebulge. For Kaskapau allomembers 1 to 6, isopachs trend north to south, suggesting a load directly to the west; allomembers 7 to 28 show an abrupt rotation of isopachs to NW–SE, suggesting that the load shifted several hundred kilometres to the south. This re‐orientation might be related to a change from an approximately orthogonal to a dextral transpressive stress regime. Within the longer‐term offlap–onlap cycle recorded by the Kaskapau and Cardium Formations, individual allomembers are grouped into packages reflecting higher‐frequency onlap–offlap cycles, each spanning ca 0·5 to 0·7 Myr. Offlap from the forebulge tends to be accompanied by more pronounced transgression in the foredeep, whereas onlap onto the forebulge is accompanied by progradation of tongues of shoreface sandstone. This relationship suggests that changes in deformation rate in the orogenic wedge modulated proximal subsidence rate, enhancing or suppressing shoreline progradation, and also causing subtle uplift or subsidence of the forebulge region. Wedge‐shaped allomembers in the Kaskapau Formation contain shoreface sandstone and conglomerate that prograded, respectively, <40 and <25 km from the preserved basin margin; progradation of coarse clastics was limited by rapid flexural subsidence. Tabular allomembers of the Cardium Formation imply a low flexural subsidence rate and contain sandy and conglomeratic shoreface deposits that prograded up to ca 180 km from the preserved basin margin. This relationship suggests that low rates of flexural subsidence promoted steeper alluvial gradients, more vigorous gravel transport and more extensive shoreface progradation. Overall, observed stratal geometry and facies distribution is explained readily in terms of current elastic flexural models. Most shoreface sandstones in the proximal foredeep show evidence of forced regression. Eustasy provides the most plausible explanation for relative sea‐level rise–fall cycles on the 125 kyr allomember timescale. Geometric relationships suggest eustatic oscillations of about 10 m. Forced regressive shoreface development was suppressed during Kaskapau allomembers 1 to 10 when the rate of flexural subsidence was at its highest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号